Уважаемые пользователи!

Данный сайт содержит информацию для людей с медицинским образованием и специалистов здравоохранения.
Входя на сайт, Вы подтверждаете свое согласие с Условиями использования и Политикой конфиденциальности.



Dear visitor!
This site contains medical information for healthcare professionals.
You can go further, if you agree with Terms and Conditions and Privacy Policy on this site.

Genetic framework of type 2 diabetes mellitus

Cover Page

Abstract


More than 100 genes associated with the risk of type 2 diabetes mellitus (T2DM) are now established. Most of them affect insulin secretion, adipogenesis and insulin resistance, but the exact molecular mechanisms determining their involvement in the pathogenesis of T2DM are not understood completely.

Irina Arkad'evna Bondar'

Novosibirsk State Medical University, Novosibirsk

Author for correspondence.
Email: bondaria@oblmed.nsk.ru

Russian Federation MD, PhD, Professor, Head of Endocrinology Department

Olesya Yur'evna Shabel'nikova

Novosibirsk State Regional Hospital, Novosibirsk

Email: odc@oblmed.nsk.ru

Russian Federation MD, PhD, Head of Regional Diabetic Center

  1. DeFronzo RA. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–795. doi: 10.2337/db09-9028.
  2. Kobberling J, Tillil H. Empirical risk figures for first degree relatives of non-insulin dependent diabetics. In Kobberling J and Tattersall R. The Genetics of Diabetes Mellitus. London: Academic Press;1982. p 201–209.
  3. Rich SS. Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes 1990;39(11):1315–1319. doi: 10.2337/diab.39.11.1315.
  4. Meigs JB, Cupples LA, Wilson PW, Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes. 2000;(49):2201–2217.
  5. Newman B, Selby JV, King MC, Slemenda C, Fabsitz R, Friedman GD. Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia. 1987;30(10):763–768. doi: 10.1007/BF00275741.
  6. Kaprio J, Tuomilehto J, Koskenvuo M, Romanov K, Reunanen A, Eriksson J, et al. Concordance for Type 1 (insulin-dependent) and Type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia. 1992; 35(11):1060–1067. doi: 10.1007/BF02221682.
  7. Knowler WC, Pettitt DJ, Saad MF, Bennett PH. Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab Rev. 1990;6(1):1–27.
  8. Grigorescu F, Attaoua R, Ait El Mkadem S, Radian Ş. Susceptibility genes for insulin resistance and type 2 diabetes. In Cheţa D (ed). Genetics of diabetes. The Truth Unveiled. Ed Acad. Rom, Bucureşti & S. Karger AG, Basel. 2010;131–192.
  9. Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 2004;350(18):1838-1849. doi: 10.1056/NEJMoa032922.
  10. Waterfield T, Gloyn AL, Monogenic β-cell dysfunction in children: clinical phenotypes, genetic etiology and mutational pathways. Pediatr Health. 2008;(2):517–532.
  11. Иванов ВИ. Геномика – медицине. М: Академкнига; 2005.392 с.
  12. Yen CJ, Beamer BA, Negri C, Silver K, Brown KA, Yarnall DP, et al. Molecular scanning of the human Peroxisome proliferator activated receptor g (hPPARg) gene in diabetic Caucasians: identification of a Pro12Ala PPARg2 missense mutation. Biochem Biophys Res Commun. 1997;241(2):270–274. doi: 10.1006/bbrc.1997.7798.
  13. Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, Mykkanen L, Kuusisto J, et al. A Pro12Ala substitution in PPARg2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998;20(3):284–287.
  14. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, et al. The common PPARg Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26(1):76–80.
  15. Velho G, Froguel P. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians. Diabetologia. 1998;41(12):1511–1515. doi: 10.1007/s001250051098.
  16. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes.. Diabetes. 2003;52(2):568–572. doi: 10.2337/diabetes.52.2.568.
  17. Vionnet N, Hani EH, Dupont S, Gallina S, Francke S, Dotte S, et al. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21–q24. Am J Hum Genet. 2000;67(6):1470–1480. doi: 10.1086/316887.
  18. Humphreys K, Wahlestedt C, Brookes AJ, Efendic S. Single nucleotide polymorphisms in the proximal promoter region of the adiponectin (APM1) gene are associated with type 2 diabetes in Swedish Caucasians. Diabetes. 2004; 53(1):31–35.
  19. Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K, et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population.. Diabetes. 2002;51(2):536–540. PMID: 11812766.
  20. Grigorescu F, Attaoua R, Ait El Mkadem S, Radian S. Susceptibility genes for insulin resistance and type 2 diabetes. In Cheţa D (ed). Genetics of diabetes. The Truth Unveiled. Ed Acad Rom, Bucureşti & S. Karger AG, Basel. 2010; pp.131–192.
  21. Reynisdottir I, Thorleifsson G, Benediktsson R, Sigurdsson G, Emilsson V, Einarsdottir AS, et al. Localization of a Susceptibility Gene for Type 2 Diabetes to Chromosome 5q34–q35.2. The American Journal of Human Genetics. 2003;73(2):323–335. doi: 10.1086/377139.
  22. Grant SFA, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320–323.
  23. Florez JC. The new type 2 diabetes gene TCF7L2. Curr Opin Clin Nutr Metab Care. 2007;10(4):391–396. doi: 10.1097/MCO.0b013e3281e2c9be.
  24. Cauchi S, El Achhab Y, Choquet H, Dina C, Krempler F, Weitgasser R, et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis.. J Mol Med (Berl). 2007;85(7):777–782. doi: 10.1007/s00109-007-0203-4.
  25. Lyssenko V, Lupi R, Marchetti P, del Guerra S, Orho-Melander M, Almgren P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117(8):2155–2163.
  26. Schäfer SA, Machicao F, Fritsche A, Häring H, Kantartzis K. New type 2 diabetes risk genes provide new insights in insulin secretion mechanisms. Diabetes Res Clin Pract 2011;93 Suppl 1:9–24. doi: 10.1016/S0168–8227(11)70008-0
  27. Farch K, Pilgaard K, Knop FK, Hansen T, Pedersen O, Jorgensen T, et al. Incretin and pancreatic hormone secretion in Caucasian non-diabetic carriers of the TCF7L2 rs7903146 risk T allele. Diabetes Obes Metab. 2013;15(1):91–95. doi: 10.1111/j.1463-1326.2012.01675.x
  28. Li M, Li C, Guan W. Evaluation of coverage variation of SNP chips for genome-wide association studies. Eur J Hum Genet. 2008;16(5):635–643. doi: 10.1038/sj.ejhg.5202007
  29. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579–589. doi: 10.1038/ng.609
  30. Scott RA, Lagou V, Welch RP. Large-scale association study using the Metabochip array reveals new loci influencing glycemic traits and provides insight into the underlying biological pathways. Nat Genet. 2012;44(9):991–1005. doi: 10.1038/ng.2385
  31. Franks PW. Genetic risk scores ascertained in early adulthood and the prediction of type 2 diabetes later in life. Diabetologia. 2012;55(10):2555–2558. doi: 10.1007/s00125-012-2683-1
  32. Sanghera DK, Blackett PR. Type 2 Diabetes Genetics: Beyond GWAS. J Diabetes Metab. 2012;3(05):2–17. doi: 10.4172/2155-6156.1000198
  33. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341–1345.
  34. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H Timpson NJ, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336–1134. doi: 10.1126/science.1142364
  35. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881–885. doi: 10.1038/nature05616
  36. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579–589. doi: 10.1038/ng.609
  37. Lyssenko V, Nagorny CLF, Erdos MR. A common variant in the melatonin receptor gene (MTNR1B) is associated with increased risk of future type 2 diabetes and impaired early insulin secretion. Nat Genet. 2008;41(1):82–88. doi: 10.1038/ng.288

Supplementary files

There are no supplementary files to display.

Views

Abstract - 1801

PDF (Russian) - 1022

HTML (Russian) - 3126

Cited-By


PlumX


Copyright (c) 2013 Bondar' I.A., Shabel'nikova O.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies