Уважаемые пользователи!

Данный сайт содержит информацию для людей с медицинским образованием и специалистов здравоохранения.
Входя на сайт, Вы подтверждаете свое согласие с Условиями использования и Политикой конфиденциальности.



Dear visitor!
This site contains medical information for healthcare professionals.
You can go further, if you agree with Terms and Conditions and Privacy Policy on this site.

Morphology of bronchial epithelium in rodent streptozotocin-induced diabetes mellitus

Cover Page

Abstract


Aim.
 To study the morphology of bronchial epithelium in a rodent streptozotocin-induced (STZ) diabetes mellitus.
Materials and Methods.
. Diabetes mellitus was introduced in 47 white Wistar rats aged 5?6 months (body weight 234.0?2.64 g). 43 white Wistar rats of the same age were used as control subjects (body weight 242.0?2.13). Diabetes was induced by single intraperitoneal injection of STZ (SIGMA, USA) 60 mg/kg in 0.1 M citrate buffer, pH 4.5.
Results.
A statistically significant decrease in the total epithelial area by 25.9% was observed in the study group, accompanied by a reduction of the supranuclear zone by 22.1% vs. the control group.
Conclusion.
We found that bronchial mucous membrane in rodents with STZ-induced diabetes mellitus exhibits signs of atrophy and partial loss of mucous production by bronchial secretory cells.

Oksana Anatolyevna Pivovarova

State Establishment "Lugansk State Medical University", Lugansk

Author for correspondence.
Email: aksiniyalosk@mail.ru

Ukraine MD, PhD, Assintant Professor in Internal Medicine Department

Boris Nikitich Mankovsky

P.L.Shupik National Medical Academy of post-graduate education, Kiev

Email: aksiniyalosk@mail.ru

Ukraine MD, PhD, Professor, Fellow of Ukraine National Academy of Medical Sciences, Head of Endocrinology Department

  1. Vila-Corcoles A, Ochoa-Gondar O. Pneumococcal vaccination among adults with chronic respiratory diseases: a historical overview. Expert Review of Vaccines. 2012;11(2):221–236.
  2. doi: 10.1586/erv.11.176
  3. Kheradmand F, Shan M, Xu C, Corry DB. Autoimmunity in chronic obstructive pulmonary disease: clinical and experimental evidence. Expert Review of Clinical Immunology. 2012;8(3):285–292.
  4. doi: 10.1586/eci.12.7
  5. Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNF-alpha in pulmonary pathophysiology. Respiratory research. 2006;7:125–130.
  6. Parker C,Thavagnanam ST, Skibinski G,Heaney LG, Shields MD.Mechanisms of lung infection in the community and hospital setting:S86 effects of exposure to IL-13, IL-31 and an IL-13/31 combination on mucociliary differentiation of bronchial epithelial cells. Thorax.2010;65(Suppl 4):A40.
  7. doi: 10.1136/thx.2010.150938.37
  8. Pasteur MC, Bilton D,Hill AT. British thoracicsociety guideline for non-CFbronchiectasis.Thorax.2010;65(Suppl 1):i1–i58.
  9. doi: 10.1136/thx.2010.136119
  10. Lee P, Khoo KL. A review of current bronchoscopic interventions for obstructive airway diseases. Therapeutic Advances in Respiratory Disease. 2012;6(5):297–307.
  11. doi: 10.1177/1753465812455448
  12. Lommatzsch SE, Martin RJ.Importance of fiberoptic bronchoscopy in identifying asthma phenotypes to direct personalized therapy. Current opinion in pulmonary medicine. 2013;19(1):42–48.
  13. doi: 10.1097/MCP.0b013e32835a5bdc
  14. Mirrakhimov AE. Chronic obstructive pulmonary disease and glucose metabolism. Cardiovascular Diabetology. 2012;11:132.
  15. doi: 10.1186/1475-2840-11-132
  16. ClayAS, BehniaM, BrownKK. Mitochondrial disease: A pulmonary and critical-care medicine perspective. Chest. 2001;120(2):634–648.
  17. doi: 10.1378/chest.120.2.634
  18. Maniscalco WM, Watkins RH, O'Reilly MA, Shea CP. Increased epithelial cell proliferation in very premature baboons with chronic lung disease. American Journal of Physiology – Lung Cellular and Molecular Physiology. 2002;283(5):L991–L1001.
  19. doi: 10.1152/ajplung.00050.2002
  20. Skjøt-Arkil H, Clausen RE, Nguyen QH, Wang Y, Zheng Q, Martinez FJ, et al. Measurement of MMP-9 and -12 degraded elastin (ELM) provides unique information on lung tissue degradation. BMC Pulmonary Medicine. 2012;12:34.
  21. doi: 10.1186/1471-2466-12-34
  22. Tam A, Wadsworth S, Dorscheid D, Man SFP, Sin DD. The airway epithelium: more than just a structural barrier. Therapeutic Advances in Respiratory Disease. 2011;5(4):255–273.
  23. doi: 10.1177/1753465810396539
  24. Ходзицкая ВК. Нарушение и коррекция мукоцилиарного клиренса при заболеваниях дыхательных путей. Болезни и антибиотики. 2010;1(3):5–12. [Khodzitskaya VK. Narushenie i korrektsiya mukotsiliarnogo klirensa pri zabolevaniyakh dykhatel'nykh putey. Bolezni i antibiotiki. 2010;1(3):5–12].
  25. Wood AM, Stockley RA. Editorial: Unifying the genetics, co-morbidities and management of COPD. Therapeutic Advances in Respiratory Disease. 2008;2(3):113–117.
  26. doi: 10.1177/1753465808092282
  27. Березин АЕ. Биологические прогностические факторы риска у пациентов с внебольничной пневмонией. Клиническое значение, ожидания и перспективы. Український медичний часопис. 2010;77(3):81–87. [Berezin AE. Biologicheskie prognosticheskie faktory riska u patsientov s vnebol'nichnoy pnevmoniey. Klinicheskoe znachenie, ozhidaniya i perspektivy. Ukraїns'kiy medichniy

Views

Abstract - 1056

PDF (Russian) - 559

HTML (Russian) - 951

Cited-By


PlumX


Copyright (c) 2013 Pivovarova O.A., Mankovsky B.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies