Уважаемые пользователи!

Данный сайт содержит информацию для людей с медицинским образованием и специалистов здравоохранения.
Входя на сайт, Вы подтверждаете свое согласие с Условиями использования и Политикой конфиденциальности.



Dear visitor!
This site contains medical information for healthcare professionals.
You can go further, if you agree with Terms and Conditions and Privacy Policy on this site.

Clinical and Genetic Aspects of Sporadic Non-Medullar Thyroid Cancer

Cover Page

Abstract


The role of somatic mutations in sporadic thyroid cancer is unclear today. Probably they coming out as aetiological factors in carcinogenesis as well as, respectfully to many authors, can to participate in TC pathogenesis and to determine the clinical course and prognosis of the disease. For today as main oncogenes taking part in initiation of thyroid malignant tumors are considered: RET/PTC, TRK, PTEN, P53, RAS, MET, PPARγ. By means of genetic investigations scientists are trying to solve problems with thyroid cancer differentiated diagnostics (cytokeratin-19, cytokeratin-20, mesothelial cells antigen (Hector Battifora MEsotelial (cell) or HBME-1), loss of heterozigitoty (LOH) in short arm of 3 chromosome (gene VHL -von Hippel Lindau, 3р26). Recently in foreign literature appeared reports of activated mutations in gene BRAF which most frequently are occurred in melanoma and papillary TC. Prognosis of thyroid cancer may reflected by the LOH as a biological breakage as well as changes of tumor suppressive gene P53 which fraught with decrease of disease prognosis. Thus, both researchers and clinicians have many questions concerning the role of genome, particularly in order to precise of genetic abnormality influence on tumor growth and therefore for assessment of clinical prognosis and with aim to chose adequate treatment tactic in each case.

Otdelenie radiokhirurgicheskogo lecheniya zakrytymi radionuklidami

Otdelenie radiokhirurgicheskogo lecheniya zakrytymi radionuklidami

Otdelenie radiokhirurgicheskogo lecheniya zakrytymi radionuklidami

  1. Bevan S., Pal T., Greenberg C.R. et al. A comprehensive analysis of MNG1, TCO1, fPTC, PTEN, TSHR, and TRKA in familial non-medullary thyroid cancer: confirmation of linkage to TCO1 // J. Clin. Endocrnol. Metab. 2001. V. 86. N 8. P. 3701-3704.
  2. Brose M.S., Volpe P., Feldman M. et al. BRAF and RAS mutations in human lung cancer and melanoma // Cancer Res. 2002. V. 62. N 23. P. 6997-7000.
  3. Castro M.R., Bergert E.R., Goellner J.R. et al. Immunohistochemical analysis of sodium iodine symporter expression in metastatic differentiated thyroid cancer: correlation with radioiodine uptake // J. Clin. Endocrinol. Metab. 2001. V. 86. N 11. P. 5627-5632.
  4. Cohen Y., Xing M., Mambo E. et al. BRAF mutation in papillary thyroid carcinoma // J. Natl. Cancer Inst. 2003. V. 95. N 8. P. 625-627.
  5. Denizot A., Delfino C., Dutour-Meyer A. et al. Evaluation of quantitative measurement of thyroglobulin mRNA in the follow-up of differentiated thyroid cancer // Thyroid. 2003. V. 13. N 9. P. 867-872.
  6. Di Renzo M.F., Olivero M., Ferro S. et al. Overexpression of the cMet/HGF receptor gene in human thyroid carcinomas. // Oncogene. 1992. V. 7. N 12. P. 2549-2553.
  7. Dobashi Y., Sakamoto A., Sugimura H. et al. Overexpression of p53 as a possible prognostic factor in human thyroid carcinoma // Am. J. Surg. Pathol. 1993. V. 17. N 4. P. 375-381.
  8. Dohan O., De la Vieja A., Paroder V. The sodium/iodide Symporter (NIS): characterization, regulation, and medical significance // Endocr. Rev. 2003. V. 24. N 1. P. 48-77.
  9. Donghi R., Longoni A., Pilotti S. et al. Gene p53 mutations are resticted to poorly differentiated and undifferentiated carcinomas of the thyroid gland // J. Clin. Invest. 1993. V. 91. N 4. P. 1753-1760.
  10. Fugazzola L., Pierotti M.A., Vigano E. et al. Molecular and biochemical analysis of RET/PTC4, a novel oncogenic rearrangement between RET and ELE1 genes in a post-Chernobyl papillary thyroid cancer // Oncogene. 1996. V. 13. N 5. P. 1093-1097.
  11. Gimm O., Perren A., Weng L.P. et al. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors // Am. J. Pathol. 2000. V. 156. N 5. P. 1693-1700.
  12. Gimm O., Chi H., Dahia L.M. et al. Somatic mutation and germline variants of MINPP1, a phosphatase gene located in proximity to PTEN on 10q23.3, in follicular thyroid carcinomas // J. Clin. Endocrinol. Metab. 2001. V. 86. N 4. P. 1801-1805.
  13. Gimm O. Thyroid cancerm // Cancer letters. 2001. V. 163. P. 143-156.
  14. Nagataki S., Nystrom E. Epidemiology and primary prevention of thyroid cancer // Thyroid. 2002. V. 12. N 10. P. 889-894.
  15. Grammatopoulos D., Elliott Y., Smith S.C. et al. Measurement of thyroglobulin mRNA in peripheral blood as an adjunctive test for monitoring thyroid cancer // J. Clin. Pathol: Mol. Pathol. 2003. V. 56. N 3. P. 162-166.
  16. Greco A., Pierotti M.A., Bongarzone I. et al. Trk-T1 is a novel oncogene formed by the fusion of tpr and trk genes in human papillary thyroid carcinomas // Oncogene. 1992. V. 7. N 2. P. 237-242.
  17. Greco A., Miranda C., Pagliardini S. et al. Chromosome rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes // Genes Chrom. Cancer. 1997. V. 19. N 2. P. 112-123.
  18. Haugen B.R., Nawaz S., Markhom N. et al. Telomerase activity in benign and malignant thyroid tumors // Thyroid. 1997. V. 7. N 3. P. 334-342.
  19. Herrmann M.A., Hay I.D., Bartelt D.H. Jr. et al. Cytogenetic and molecular genetic studies of follicular and papillary thyroid cancers // J Clin Invest. 1991. V. 88. N 5. P. 1596-1604.
  20. Houlston R.S., Stratton M.R. Genetics of non-medullary thyroid cancer // Q. J. Med. 1995. V. 88. N 10. P. 685-693.
  21. Hunt J.L., Yim J.H., Tometsko M. et al. Loss of heterozygosity of the VHL gene identifies malignancy and predicts death in follicular thyroid tumors // Surgery. 2003. V. 134. N 6. P. 1043-1047; discussion P. 1047-1048.
  22. Kesmodel S.B., Terhune K.P., Canter R.J. et al. The diagnostic dilemma of follicular variant of papillary thyroid carcinoma // Surgery. 2003. V. 134. N 6. P. 1005-1012.
  23. Kim K.H., Kang D.W., Kim S.H. et al. Mutations of the BRAF gene in papillary thyroid carcinoma in a Korean population // Yonsei Med. J. 2004. V. 45. N 5. P. 818-821.
  24. Kitamura Y., Shimizu S., Tanaka K. et al. Allelotyping of anaplastic thyroid carcinoma: frequent allelic losses on 1q, 9p,11, 17, 19p, and 22q // Genes chrom. Cancer. 2000. V. 27. N 3. P. 244-251.
  25. Kimura E.T., Nikiforova M.N., Zhu Z. et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma // Cancer Res. 2003. V. 63. N 7. P. 1454-1457.
  26. Klugbauer S., Lengfelder E., Demidchick E.P. et al. A new form of RET rearrangement in thyroid carcinomas of children after the Chernobyl accident // Oncogene. 1996. V. 13. N 5. P. 1099-1102.
  27. Kumagai A., Namba H., Saenko V.A. et al. Low frequency of B RAFT1796A mutations in childhood thyroid carcinomas // J. Clin. Endocrinol. Metab. 2004. V. 89. N 9. P. 4280-4284.
  28. Lesueur F., Stark M., Tocco T. et al. Genetic geterogenity in familial non-medullary thyroid carcinoma: exclusion of linkage to RET, MNG 1 and TCO in 56 families // J. Clin. Endocrinol. Metab. 1999. V. 84. N 6. P. 2157-2162.
  29. Lewinski A. Thyroid carcinoma: diagnostic and therapeutic approach; genetic background (review) // Endocr. Regul. 2000. V. 34. P. 99-113.
  30. Loh K.C. Familial nonmedullary thyroid carcinoma: a metareview of case series // Thyroid. 1997.V. 7. N 1. P. 107-113.
  31. Lote K., Andersen K., Nordal E. et al. Familial occurrence of papillary thyroid carcinoma // Cancer. 1980. V. 46. N 5. P. 1291-1297.
  32. Marques A.R., Espadinha C., Catarino A.L. et al. Expression of PAX8-PPARr rearrangement in thyroid tumors: RT-PTC and immunohistochemical analyses // Am. J. Surg. Pathol. 2002. V. 87. N 8. P. 3947-3952.
  33. Martins L., Matsuo S.E., Ebina K.N. et al. Galectin-3 messenger ribonucleic acid and protein are expressed in benign thyroid tumors // J. Clin. Endocrinol. Metab. 2002. V. 87. N 10. P. 4806-4810.
  34. Mase T., Funahashi H., Koshikawa T. et al. HBME-1 Immunostaining in thyroid tumors especially in follicular neoplasm // Endocr. J. 2003. V. 50. N 2. P. 173-177.
  35. Namba H., Nakashima M., Hayashi T. et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers // J. Clin. Endocrinol. Metab. 2003. V. 88. N 9. P. 4393-4397.
  36. Nikiforov Y.E., Rowland J.M., Bove K.E. et al. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children // Cancer Res. 1997. V. 57. N 9. P. 1690-1694.
  37. Nikiforova M.N., Kimura E.T., Gandhi M. et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas // J. Clin. Endocrinol. Metab. 2003. V. 88. N 11. P. 5399-5404.
  38. Peyssonnaux C., Eychene A. The Raf/MEK/ERK pathway: new concepts of activation // Biol. Cell. 2001. V. 93. N 1. P. 53-62.
  39. Pierotti M.A., Bongarzone I., Borrello M.G. et al. Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells // Genes Chrom. Cancer. 1996. V. 16. N 1. P. 1-14.
  40. Rios A., Rodriguez J.M., Illana J. et al. Familial papillary carcinoma of the thyroid: report of three families. // Eur. J. Surg. 2001. V. 167. N 5. P. 339-343.
  41. Ron E., Kleinerman R.A., Boice J.D. et al. A population-based casecontrol study of thyroid cancer // J. Natl. Cancer Inst. 1987. V. 79. N 1. P. 1-12.
  42. Santoro M., Dathan N.A., Berlingheri M.T. et al. Molecular characterization of RET/PTC3, a novel rearranged version of the RET oroto-oncogene in a human thyroid papillary carcinoma // Oncogene. 1994. V. 9. N 2. P. 509-516.
  43. Schlumberger M. Inheritable forms of thyroid carcinoma // Thyroid International. 2000. N 4. P. 3-8.
  44. Schmitz-Winnenthal F.H., Weckauf H., Haufe S. et al. Detection and prognostic relevance of cytokeratin 20 in differentiated and anaplastic thyroid carcinomas by RT-PCR // Surgery. 2003. V. 134. N 6. P. 964-971.
  45. Shi Y., Zou M., Schmidt H. et al. High rates of ras codon 61 mutation in thyroid tumors in an iodide-deficient area // Cancer Res. 1991. V. 51. N 10. P. 2690-2693.
  46. Tallini G., Asa S.L. RET oncogene activation in papillary thyroid carcinoma. // Adv. Anat. Pathol. 2001. V. 8. N 6. P. 345-354.
  47. Tuttle R.M., Becker D.V. The Chernobyl accident and its consequences: update at the millennium // Semin. Nucl. Med. 2000. V. 30. N 2. P.133-140.
  48. Williams E.D. Mechanisms and pathogenesis of thyroid cancer in animals and man. // Mutation Res. 1995. V. 333. N 1. P. 123-129.
  49. Wingo S.T., Ringel M.D., Anderson J.S. et al. Quantitative reserve transcription-PTR measurement of thyroglobulin mRNA in peripheral blood in healthy subjects // Clin. Chem. 1999. V. 45. N 6. P. 785-789.

Views

Abstract - 480

PDF (Russian) - 278

PlumX


Copyright (c) 2006 ., ., .

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.