Perivascular adipose tissue: role in the pathogenesis of obesity, type 2 diabetes mellitus and cardiovascular pathology.

Cover Page


Perivascular adipose tissue is a part of blood vessel wall, regulating endovascular homeostasis, endothelial and smooth muscle cells functioning. Under physiological conditions, perivascular tissue provides beneficial anticontractile effect, though undergoes structural and functional changes in obesity, atherosclerosis and diabetes mellitus type2.Collected data suggest the possible key role of perivascular adipose tissue in the pathogenesis of these diseases. Perivascular tissue has been determined as an independent cardiovascular risk factor, regardless of visceral obesity. General mechanisms include a local low-grade inflammation, oxidative stress, tissue renin-angiotensin-aldosterone system activation, paracrine and metabolic alterations. Properties of perivascular adipose tissue depend on the certain type of adipocytes it contains. Brown adipocytes are well known for their metabolic preferences, however it has been shown recently that brown perivascular tissue can contribute to dyslipidemia under some conditions.  The aim of this review is to discuss the current literature understanding of perivascular adipose tissue specifics, changes in its activity, secretory and genetic profilein a course of the most common non-infectious diseases development, as well as molecular mechanisms of its functioning. We also discuss perspectives of target interventions using metabolic pathways and genes of perivascular tissue, for the effective prevention of obesity, diabetes mellitus type2 and cardiovascular diseases.

About the authors

Tat'yana Ivanovna Romantsova

I. M. Sechenov's First Moscow State Medical University


Russian Federation MD Ph.D., professor of endocrinology

Ariadna Vasil'evna Ovsyannikovna

I. M. Sechenov's First Moscow State Medical University

Author for correspondence.

Russian Federation student


  1. Miao C-Y, Li Z-Y. The role of perivascular adipose tissue in vascular smooth muscle cell growth. British Journal of Pharmacology. 2012;165(3):643-58. doi: 10.1111/j.1476-5381.2011.01404.x
  2. Soltis EE, Cassis LA. Influence of Perivascular Adipose Tissue on Rat Aortic Smooth Muscle Responsiveness. Clinical and Experimental Hypertension Part A: Theory and Practice. 2009;13(2):277-96. doi: 10.3109/10641969109042063
  3. Lohn M. Periadventitial fat releases a vascular relaxing factor. The FASEB Journal. 2002;16(9):1057-63. doi: 10.1096/fj.02-0024com
  4. Almabrouk TAM, Ewart MA, Salt IP, Kennedy S. Perivascular fat, AMP-activated protein kinase and vascular diseases. British Journal of Pharmacology. 2014;171(3):595-617. doi: 10.1111/bph.12479
  5. Barandier C. Mature adipocytes and perivascular adipose tissue stimulate vascular smooth muscle cell proliferation: effects of aging and obesity. AJP: Heart and Circulatory Physiology. 2005;289(5):H1807-H13. doi: 10.1152/ajpheart.01259.2004
  6. Souza DSR, Johansson B, Bojö L, Karlsson R, Geijer H, Filbey D, et al. Harvesting the saphenous vein with surrounding tissue for CABG provides long-term graft patency comparable to the left internal thoracic artery: Results of a randomized longitudinal trial. The Journal of Thoracic and Cardiovascular Surgery. 2006;132(2):373-8.e5. doi: 10.1016/j.jtcvs.2006.04.002
  7. Wang P, Xu TY, Guan YF, Su DF, Fan GR, Miao CY. Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide. Cardiovascular Research. 2008;81(2):370-80. doi: 10.1093/cvr/cvn288
  8. Takaoka M, Nagata D, Kihara S, Shimomura I, Kimura Y, Tabata Y, et al. Periadventitial Adipose Tissue Plays a Critical Role in Vascular Remodeling. Circulation Research. 2009;105(9):906-11. doi: 10.1161/circresaha.109.199653
  9. Frontini A, Cinti S. Distribution and Development of Brown Adipocytes in the Murine and Human Adipose Organ. Cell Metabolism. 2010;11(4):253-6. doi: 10.1016/j.cmet.2010.03.004
  10. Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, et al. Proinflammatory Phenotype of Perivascular Adipocytes: Influence of High-Fat Feeding. Circulation Research. 2009;104(4):541-9. doi: 10.1161/circresaha.108.182998
  11. Ruan CC, Zhu DL, Chen QZ, Chen J, Guo SJ, Li XD, et al. Perivascular Adipose Tissue-Derived Complement 3 Is Required for Adventitial Fibroblast Functions and Adventitial Remodeling in Deoxycorticosterone Acetate-Salt Hypertensive Rats. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010;30(12):2568-74. doi: 10.1161/atvbaha.110.215525
  12. Meijer RI, Serne EH, Smulders YM, van Hinsbergh VWM, Yudkin JS, Eringa EC. Perivascular Adipose Tissue and Its Role in Type 2 Diabetes and Cardiovascular Disease. Current Diabetes Reports. 2011;11(3):211-7. doi: 10.1007/s11892-011-0186-y
  13. Rajsheker S, Manka D, Blomkalns AL, Chatterjee TK, Stoll LL, Weintraub NL. Crosstalk between perivascular adipose tissue and blood vessels. Current Opinion in Pharmacology. 2010;10(2):191-6. doi: 10.1016/j.coph.2009.11.005 14. Mattu HS, Randeva HS. Role of adipokines in cardiovascular disease. Journal of Endocrinology. 2012;216(1):T17-T36. doi: 10.1530/joe-12-0232
  14. Rodríguez A, Fortuño A, Gómez-Ambrosi J, Zalba G, Díez J, Frühbeck G. The Inhibitory Effect of Leptin on Angiotensin II-Induced Vasoconstriction in Vascular Smooth Muscle Cells Is Mediated via a Nitric Oxide-Dependent Mechanism. Endocrinology. 2007;148(1):324-31. doi: 10.1210/en.2006-0940
  15. Galvez B. Perivascular Adipose Tissue and Mesenteric Vascular Function in Spontaneously Hypertensive Rats. Arteriosclerosis, Thrombosis, and Vascular Biology. 2006;26(6):1297-302. doi: 10.1161/01.ATV.0000220381.40739.dd
  16. Thalmann S, Meier C. Local adipose tissue depots as cardiovascular risk factors. Cardiovascular Research. 2007;75(4):690-701. doi: 10.1016/j.cardiores.2007.03.008
  17. Cheng KH, Chu CS, Lee KT, Lin TH, Hsieh CC, Chiu CC, et al. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. International Journal of Obesity. 2007;32(2):268-74. doi: 10.1038/sj.ijo.0803726
  18. G. Spiroglou S, G. Kostopoulos C, N. Varakis J, H. Papadaki H. Adipokines in Periaortic and Epicardial Adipose Tissue: Differential Expression and Relation to Atherosclerosis. Journal of Atherosclerosis and Thrombosis. 2010;17(2):115-30. doi: 10.5551/jat.1735
  19. Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, et al. Local Inflammation and Hypoxia Abolish the Protective Anticontractile Properties of Perivascular Fat in Obese Patients. Circulation. 2009;119(12):1661- 70. doi: 10.1161/circulationaha.108.821181
  20. Lynch FM, Withers SB, Yao Z, Werner ME, Edwards G, Weston AH, et al. Perivascular adipose tissue-derived adiponectin activates BKCa channels to induce anticontractile responses. AJP: Heart and Circulatory Physiology. 2013;304(6):H786-H95. doi: 10.1152/ajpheart.00697.2012
  21. Zhu W, Cheng Kenneth KY, Vanhoutte Paul M, Lam Karen SL, Xu A. Vascular effects of adiponectin: molecular mechanisms and potential therapeutic intervention. Clinical Science. 2008;114(5):361-74. doi: 10.1042/cs20070347
  22. Ketonen J, Shi J, Martonen E, Mervaala E. Periadventitial Adipose Tissue Promotes Endothelial Dysfunction via Oxidative Stress in Diet-Induced Obese C57Bl/6 Mice. Circulation Journal. 2010;74(7):1479-87. doi: 10.1253/circj.CJ-09-0661
  23. Marchesi C, Ebrahimian T, Angulo O, Paradis P, Schiffrin EL. Endothelial Nitric Oxide Synthase Uncoupling and Perivascular Adipose Oxidative Stress and Inflammation Contribute to Vascular Dysfunction in a Rodent Model of Metabolic Syndrome. Hypertension. 2009;54(6):1384-92. doi: 10.1161/hypertensionaha.109.138305
  24. Meijer RI, Bakker W, Alta CLAF, Sipkema P, Yudkin JS, Viollet B, et al. Perivascular Adipose Tissue Control of Insulin-Induced Vasoreactivity in Muscle Is Impaired in db/db Mice. Diabetes. 2012;62(2):590-8. doi: 10.2337/db11-1603
  25. Lobato NS, Neves KB, Filgueira FP, Fortes ZB, Carvalho MHC, Webb RC, et al. The adipokine chemerin augments vascular reactivity to contractile stimuli via activation of the MEK-ERK1/2 pathway. Life Sciences. 2012;91(13-14):600-6. doi: 10.1016/j.lfs.2012.04.013
  26. Szasz T, Bomfim Gf, Webb. The influence of perivascular adipose tissue on vascular homeostasis. Vascular Health and Risk Management. 2013:105. doi: 10.2147/vhrm.s33760
  27. Yamawaki H, Tsubaki N, Mukohda M, Okada M, Hara Y. Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochemical and Biophysical Research Communications. 2010;393(4):668-72. doi: 10.1016/j.bbrc.2010.02.053
  28. Gao Y, Takemori K, Su L, An W, Lu C, Sharma A, et al. Perivascular adipose tissue promotes vasoconstriction: the role of superoxide anion. Cardiovascular Research. 2006;71(2):363-73. doi: 10.1016/j.cardiores.2006.03.013
  29. Wójcicka G, Jamroz-Wiśniewska A, Atanasova P, Chaldakov GN, Chylińska-Kula B, Bełtowski J. Differential effects of statins on endogenous H2S formation in perivascular adipose tissue. Pharmacological Research. 2011;63(1):68-76. doi: 10.1016/j.phrs.2010.10.011
  30. Lee YC, Chang HH, Chiang CL, Liu CH, Yeh JI, Chen MF, et al. Role of Perivascular Adipose Tissue-Derived Methyl Palmitate in Vascular Tone Regulation and Pathogenesis of Hypertension. Circulation. 2011;124(10):1160-71. doi: 10.1161/circulationaha.111.027375
  31. Lu C, Su L-Y, Lee RMKW, Gao Y-J. Alterations in perivascular adipose tissue structure and function in hypertension. European Journal of Pharmacology. 2011;656(1-3):68-73. doi: 10.1016/j.ejphar.2011.01.023
  32. Rittig K, Dolderer JH, Balletshofer B, Machann J, Schick F, Meile T, et al. The secretion pattern of perivascular fat cells is different from that of subcutaneous and visceral fat cells. Diabetologia. 2012;55(5):1514-25. doi: 10.1007/s00125-012-2481-9
  33. Mazurek T. Human Epicardial Adipose Tissue Is a Source of Inflammatory Mediators. Circulation. 2003;108(20):2460-6. doi: 10.1161/01.cir.0000099542.57313.c5
  34. Rittig K, Staib K, Machann J, Böttcher M, Peter A, Schick F, et al. Perivascular fatty tissue at the brachial artery is linked to insulin resistance but not to local endothelial dysfunction. Diabetologia. 2008;51(11):2093-9. doi: 10.1007/s00125-008-1128-3
  35. Goodpaster BH, Thaete FL, Kelley DE. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am J Clin Nutr. 2000; 71(4):885-92.
  36. Barrett EJ, Eggleston EM, Inyard AC, Wang H, Li G, Chai W, et al. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009;52(5):752-64. doi: 10.1007/s00125-009-1313-z
  37. Eringa EC, Bakker W, Smulders YM, Serné EH, Yudkin JS, Stehouwer CDA. Regulation of Vascular Function and Insulin Sensitivity by Adipose Tissue: Focus on Perivascular Adipose Tissue. Microcirculation. 2007;14(4-5):389-402. doi: 10.1080/10739680701303584
  38. Fernández-Alfonso MS, Gil-Ortega M, García-Prieto CF, Aranguez I, Ruiz-Gayo M, Somoza B. Mechanisms of Perivascular Adipose Tissue Dysfunction in Obesity. International Journal of Endocrinology. 2013;2013:1-8. doi: 10.1155/2013/402053
  39. Hayden MR, Sowers KM, Pulakat L, Joginpally T, Krueger B, Whaley-Connell A, et al. Possible Mechanisms of Local Tissue Renin-Angiotensin System Activation in the Cardiorenal Metabolic Syndrome and Type 2 Diabetes Mellitus. Cardiorenal Medicine. 2011;1(3):193-210. doi: 10.1159/000329926
  40. Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. AJP: Heart and Circulatory Physiology. 2011;301(4):H1425-H37. doi: 10.1152/ajpheart.00376.2011
  41. Aghamohammadzadeh R, Greenstein AS, Yadav R, Jeziorska M, Hama S, Soltani F, et al. Effects of Bariatric Surgery on Human Small Artery Function. Journal of the American College of Cardiology. 2013;62(2):128-35. doi: 10.1016/j.jacc.2013.04.027
  42. Britton KA, Pedley A, Massaro JM, Corsini EM, Murabito JM, Hoffmann U, et al. Prevalence, Distribution, and Risk Factor Correlates of High Thoracic Periaortic Fat in the Framingham Heart Study. Journal of the American Heart Association. 2012;1(6):e004200-e. doi: 10.1161/jaha.112.004200
  43. Henrichot E. Production of Chemokines by Perivascular Adipose Tissue: A Role in the Pathogenesis of Atherosclerosis? Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25(12):2594-9. doi: 10.1161/01.atv.0000188508.40052.35
  44. Öhman MK, Luo W, Wang H, Guo C, Abdallah W, Russo HM, et al. Perivascular visceral adipose tissue induces atherosclerosis in apolipoprotein E deficient mice. Atherosclerosis. 2011;219(1):33-9. doi: 10.1016/j.atherosclerosis.2011.07.012
  45. Shyu K-G, Lien L-M, Wang B-W, Kuan P, Chang H. Resistin contributes to neointimal formation via oxidative stress after vascular injury. Clinical Science. 2011;120(3):121-9. doi: 10.1042/cs20100226
  46. Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, et al. Adipocytes Produce Aldosterone Through Calcineurin-Dependent Signaling Pathways: Implications in Diabetes Mellitus-Associated Obesity and Vascular Dysfunction. Hypertension. 2012;59(5):1069-78. doi: 10.1161/hypertensionaha.111.190223
  47. Liao D, Arnett DK, Tyroler HA, Riley WA, Chambless LE, Szklo M, et al. Arterial Stiffness and the Development of Hypertension : The ARIC Study. Hypertension. 1999;34(2):201-6. doi: 10.1161/01.hyp.34.2.201
  48. Verhagen SN, Buijsrogge MP, Vink A, van Herwerden LA, van der Graaf Y, Visseren FLJ. Secretion of adipocytokines by perivascular adipose tissue near stenotic and non-stenotic coronary artery segments in patients undergoing CABG. Atherosclerosis. 2014;233(1):242-7. doi: 10.1016/j.atherosclerosis.2013.12.005
  49. Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, et al. Loss of Perivascular Adipose Tissue on Peroxisome Proliferator-Activated Receptor- Deletion in Smooth Muscle Cells Impairs Intravascular Thermoregulation and Enhances Atherosclerosis. Circulation. 2012;126(9):1067-78. doi: 10.1161/circulationaha.112.104489
  50. Dong M, Yang X, Lim S, Cao Z, Honek J, Lu H, et al. Cold Exposure Promotes Atherosclerotic Plaque Growth and Instability via UCP1-Dependent Lipolysis. Cell Metabolism. 2013;18(1):118-29. doi: 10.1016/j.cmet.2013.06.00



Abstract - 1044

PDF (Russian) - 1538



Copyright (c) 2015 Романцова Т.И., Овсянникова А.В.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies