Gglucagon-like peptide-1 analogue liraglutide (Saxenda®): mechanism of action, efficacy for the treatment of obesity

Abstract


The development of effective methods of obesity treatment with the goal of preventing many associated diseases is among the priorities of modern biomedical research. In 2016 glucagon-like peptide-1 analog (GLP-1) liraglutide 3 mg (Saxenda®) was approved in the Russian Federation for the treatment of obesity. This review presents literature data on the effects of GLP-1 and liraglutide on appetite and body weight as well as an analysis of the effectiveness and safety of drug Saxenda based on the results of major clinical trials.


Tatiana I Romantsova

Author for correspondence.
romantsovatatiana@rambler.ru
ORCID iD: 0000-0003-3870-6394
Sechenov First Moscow State Medical University, Moscow, Russia
Russian Federation

Sc.D., professor

  • Clemmensen C, Müller TD, Woods SC, et al. Gut-Brain Cross-Talk in Metabolic Control. Cell. 2017;168(5):758-774. doi: 10.1016/j.cell.2017.01.025.
  • Speakman JR. If Body Fatness is Under Physiological Regulation, Then How Come We Have an Obesity Epidemic? Physiology. 2014;29(2):88-98. doi: 10.1152/physiol.00053.2013.
  • Huypens P, Sass S, Wu M, et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet. 2016;48(5):497-499. doi: 10.1038/ng.3527.
  • Sun F, Chai S, Li L, et al. Effects of Glucagon-Like Peptide-1 Receptor Agonists on Weight Loss in Patients with Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Journal of Diabetes Research. 2015;2015:1-9. doi: 10.1155/2015/157201.
  • Sandoval DA, D'Alessio DA. Physiology of Proglucagon Peptides: Role of Glucagon and GLP-1 in Health and Disease. Physiol Rev. 2015;95(2):513-548. doi: 10.1152/physrev.00013.2014.
  • Pujadas G, Drucker DJ. Vascular Biology of Glucagon Receptor Superfamily Peptides: Mechanistic and Clinical Relevance. Endocr Rev. 2016;37(6):554-583. doi: 10.1210/er.2016-1078.
  • Muscogiuri G, DeFronzo RA, Gastaldelli A, Holst JJ. Glucagon-like Peptide-1 and the Central/Peripheral Nervous System: Crosstalk in Diabetes. Trends Endocrinol Metab. 2017;28(2):88-103. doi: 10.1016/j.tem.2016.10.001.
  • Graaf Cd, Donnelly D, Wootten D, et al. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol Rev. 2016;68(4):954-1013. doi: 10.1124/pr.115.011395.
  • Farr OM, Sofopoulos M, Tsoukas MA, et al. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia. 2016;59(5):954-965. doi: 10.1007/s00125-016-3874-y.
  • Tang-Christensen M, Larsen PJ, Goke R, et al. Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am J Physiol. 1996;271(4 Pt 2):R848-856.
  • Turton MD, O'Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379(6560):69-72. doi: 10.1038/379069a0.
  • Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest. 1998;101(3):515-520. doi: 10.1172/jci990.
  • Gutzwiller JP, Drewe J, Goke B, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol. 1999;276(5 Pt 2):R1541-1544.
  • Verdich C. A Meta-Analysis of the Effect of Glucagon-Like Peptide-1 (7-36) Amide on Ad Libitum Energy Intake in Humans. J Clin Endocrinol Metab. 2001;86(9):4382-4389. doi: 10.1210/jc.86.9.4382.
  • Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex—linking immunity and metabolism. Nature Reviews Endocrinology. 2012;8(12):743-754. doi: 10.1038/nrendo.2012.189.
  • Krieger J-P, Langhans W, Lee SJ. Vagal mediation of GLP-1's effects on food intake and glycemia. Physiol Behav. 2015;152:372-380. doi: 10.1016/j.physbeh.2015.06.001.
  • Ronveaux CC, Tome D, Raybould HE. Glucagon-Like Peptide 1 Interacts with Ghrelin and Leptin to Regulate Glucose Metabolism and Food Intake through Vagal Afferent Neuron Signaling. J Nutr. 2015;145(4):672-680. doi: 10.3945/jn.114.206029.
  • Orskov C, Poulsen SS, Morten M, Holst JJ. Glucagon-Like Peptide I Receptors in the Subfornical Organ and the Area Postrema Are Accessible to Circulating Glucagon-Like Peptide I. Diabetes. 1996;45(6):832-835. doi: 10.2337/diab.45.6.832.
  • Barrera JG, Jones KR, Herman JP, et al. Hyperphagia and Increased Fat Accumulation in Two Models of Chronic CNS Glucagon-Like Peptide-1 Loss of Function. J Neurosci. 2011;31(10):3904-3913. doi: 10.1523/jneurosci.2212-10.2011.
  • Barrera JG, Sandoval DA, D'Alessio DA, Seeley RJ. GLP-1 and energy balance: an integrated model of short-term and long-term control. Nature Reviews Endocrinology. 2011;7(9):507-516. doi: 10.1038/nrendo.2011.77.
  • Kanoski SE, Hayes MR, Skibicka KP. GLP-1 and weight loss: unraveling the diverse neural circuitry. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology. 2016;310(10):R885-R895. doi: 10.1152/ajpregu.00520.2015.
  • Abbott CR, Monteiro M, Small CJ, et al. The inhibitory effects of peripheral administration of peptide YY3–36 and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal–brainstem–hypothalamic pathway. Brain Res. 2005;1044(1):127-131. doi: 10.1016/j.brainres.2005.03.011.
  • Katsurada K, Yada T. Neural effects of gut- and brain-derived glucagon-like peptide-1 and its receptor agonist. Journal of Diabetes Investigation. 2016;7:64-69. doi: 10.1111/jdi.12464.
  • Дедов И.И., Романцова Т.И. Центральные и периферические механизмы регуляции массы тела. В кн. «Морбидное ожирение». /Под редакцией Дедова И.И. – М.:Медицинское информационное агенство; 2014. c. 17-57. [Dedov II, Romantsova TI. Tsentral'nye i perifericheskie mekhanizmy regulyatsii massy tela. In: Dedov II, editor. Morbidnoe ozhirenie. Moscow: Meditsinskoe informatsionnoe agenstvo; 2014. p. 17-57. (In Russ)]
  • Hayes MR, Schmidt HD. GLP-1 influences food and drug reward. Current Opinion in Behavioral Sciences. 2016;9:66-70. doi: 10.1016/j.cobeha.2016.02.005.
  • Takai S, Yasumatsu K, Inoue M, et al. Glucagon-like peptide-1 is specifically involved in sweet taste transmission. The FASEB Journal. 2015;29(6):2268-2280. doi: 10.1096/fj.14-265355.
  • Thiebaud N, Llewellyn-Smith IJ, Gribble F, et al. The incretin hormone glucagon-like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage-dependent potassium channel. The Journal of Physiology. 2016;594(10):2607-2628. doi: 10.1113/jp272322.
  • Hsu TM, Noble EE, Liu CM, et al. A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling. Mol Psychiatry. 2017. doi: 10.1038/mp.2017.91.
  • Terrill SJ, Jackson CM, Greene HE, et al. Role of lateral septum glucagon-like peptide 1 receptors in food intake. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology. 2016;311(1):R124-R132. doi: 10.1152/ajpregu.00460.2015.
  • Anderberg RH, Richard JE, Eerola K, et al. Glucagon-Like Peptide 1 and Its Analogs Act in the Dorsal Raphe and Modulate Central Serotonin to Reduce Appetite and Body Weight. Diabetes. 2017;66(4):1062-1073. doi: 10.2337/db16-0755.
  • 31Lockie SH, Heppner KM, Chaudhary N, et al. Direct Control of Brown Adipose Tissue Thermogenesis by Central Nervous System Glucagon-Like Peptide-1 Receptor Signaling. Diabetes. 2012;61(11):2753-2762. doi: 10.2337/db11-1556.
  • Salehi M, D’Alessio DA. Mechanisms of surgical control of type 2 diabetes: GLP-1 is the key factor—Maybe. Surg Obes Relat Dis. 2016;12(6):1230-1235. doi: 10.1016/j.soard.2016.05.008.
  • Hutch CR, Sandoval DA. Physiological and molecular responses to bariatric surgery: markers or mechanisms underlying T2DM resolution? Ann N Y Acad Sci. 2017;1391(1):5-19. doi: 10.1111/nyas.13194.
  • Wilson-Perez HE, Chambers AP, Ryan KK, et al. Vertical Sleeve Gastrectomy Is Effective in Two Genetic Mouse Models of Glucagon-Like Peptide 1 Receptor Deficiency. Diabetes. 2013;62(7):2380-2385. doi: 10.2337/db12-1498.
  • Steinert RE, Feinle-Bisset C, Asarian L, et al. Ghrelin, CCK, GLP-1, and PYY(3–36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev. 2016;97(1):411-463. doi: 10.1152/physrev.00031.2014.
  • Thiele TE, Van Dijk G, Campfield LA, et al. Central infusion of GLP-1, but not leptin, produces conditioned taste aversions in rats. Am J Physiol. 1997;272(2 Pt 2):R726-730.
  • Seeley RJ, Blake K, Rushing PA, et al. The role of CNS glucagon-like peptide-1 (7-36) amide receptors in mediating the visceral illness effects of lithium chloride. J Neurosci. 2000;20(4):1616-1621.
  • Kinzig KP, D'Alessio DA, Seeley RJ. The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness. J Neurosci. 2002;22(23):10470-10476.
  • Kanoski SE, Rupprecht LE, Fortin SM, et al. The role of nausea in food intake and body weight suppression by peripheral GLP-1 receptor agonists, exendin-4 and liraglutide. Neuropharmacology. 2012;62(5-6):1916-1927. doi: 10.1016/j.neuropharm.2011.12.022.
  • Sisley S, Gutierrez-Aguilar R, Scott M, et al. Neuronal GLP1R mediates liraglutide’s anorectic but not glucose-lowering effect. J Clin Invest. 2014;124(6):2456-2463. doi: 10.1172/jci72434.
  • Secher A, Jelsing J, Baquero AF, et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest. 2014;124(10):4473-4488. doi: 10.1172/jci75276.
  • Guillemot-Legris O, Muccioli GG. Obesity-Induced Neuroinflammation: Beyond the Hypothalamus. Trends Neurosci. 2017;40(4):237-253. doi: 10.1016/j.tins.2017.02.005.
  • Barreto-Vianna ARC, Aguila MB, Mandarim-de-Lacerda CA. Effects of liraglutide in hypothalamic arcuate nucleus of obese mice. Obesity. 2016;24(3):626-633. doi: 10.1002/oby.21387.
  • Geloneze B, de Lima-Júnior JC, Velloso LA. Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs) in the Brain–Adipocyte Axis. Drugs. 2017;77(5):493-503. doi: 10.1007/s40265-017-0706-4.
  • van Can J, Sloth B, Jensen CB, et al. Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults. Int J Obes. 2013;38(6):784-793. doi: 10.1038/ijo.2013.162.
  • Pi-Sunyer X, Astrup A, Fujioka K, et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N Engl J Med. 2015;373(1):11-22. doi: 10.1056/NEJMoa1411892.
  • le Roux CW, Astrup A, Fujioka K, et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. The Lancet. 2017;389(10077):1399-1409. doi: 10.1016/s0140-6736(17)30069-7.
  • Davies MJ, Bergenstal R, Bode B, et al. Efficacy of Liraglutide for Weight Loss Among Patients With Type 2 Diabetes. JAMA. 2015;314(7):687. doi: 10.1001/jama.2015.9676.
  • Wadden TA, Hollander P, Klein S, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: The SCALE Maintenance randomized study. Int J Obes. 2013;37(11):1443-1451. doi: 10.1038/ijo.2013.120.
  • Wharton S, Jacobsen P, Arrone L. Early responders to liraglutide 3.0 mg as adjunct to diet and excercise from the SCALE Maintenance trial. Oral presentation number RS3:3. ECO. 2017.
  • Blackman A, Foster GD, Zammit G, et al. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: the SCALE Sleep Apnea randomized clinical trial. Int J Obes. 2016;40(8):1310-1319. doi: 10.1038/ijo.2016.52.
  • Khoo J, Hsiang J, Taneja R, et al. Comparative effects of liraglutide 3 mg vs structured lifestyle modification on body weight, liver fat and liver function in obese patients with non-alcoholic fatty liver disease: A pilot randomized trial. Diabetes, Obesity and Metabolism. 2017. doi: 10.1111/dom.13007.
  • Iacobellis G, Mohseni M, Bianco SD, Banga PK. Liraglutide causes large and rapid epicardial fat reduction. Obesity. 2017;25(2):311-316. doi: 10.1002/oby.21718.
  • Lean M, C Le Roux C, Fujioka K, et al. The impact of gastrointestinal adverse events on weight loss with liraglutide 3.0 mg as adjunct to a diet and exercise program. AACE 2015; Abstract 2180335.
  • Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311-322. doi: 10.1056/NEJMoa1603827.
  • Nauck M. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes, Obesity and Metabolism. 2016;18(3):203-216. doi: 10.1111/dom.12591.
  • Andersen ES, Deacon CF, Holst JJ. Do we know the true mechanism of action of the DPP-4 inhibitors? Diabetes, Obesity and Metabolism. 2017. doi: 10.1111/dom.13018.
  • Isaacs D, Prasad-Reddy L, Srivastava SB. Role of glucagon-like peptide 1 receptor agonists in management of obesity. Am J Health Syst Pharm. 2016;73(19):1493-1507. doi: 10.2146/ajhp150990.
  • Yumuk V, Tsigos C, Fried M, et al. European Guidelines for Obesity Management in Adults. Obesity Facts. 2015;8(6):402-424. doi: 10.1159/000442721.
  • Garvey WT, Mechanick JI, Brett EM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines for Medical Care of Patients with Obesity. Endocr Pract. 2016;22(Supplement 3):1-203. doi: 10.4158/ep161365.gl.
  • Jorsal T, Rungby J, Knop FK, Vilsbøll T. GLP-1 and Amylin in the Treatment of Obesity. Current Diabetes Reports. 2015;16(1). doi: 10.1007/s11892-015-0693-3.

Supplementary files

There are no supplementary files to display.

Views

Abstract - 326

PDF (Russian) - 190


Copyright (c) 2018 Romantsova T.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.