Effect of oxidative stress on major plasma carotenoid content and composition in prepubertal children with growth hormone deficiency

Cover Page

Abstract


Objective and hypotheses. This study aimed at examining the effect of oxidative stress on amount and composition of major plasma carotenoids in prepubertal children with growth hormone deficiency (GHD).

Material and methods. Thirteen prepubertal treatment-naive children (2 girls, 11 boys; aged 3.5—12.0 yr, median 8.0 years; bone age 1.5—8.0 yr; median 6.0 years,) with GHD and 7 prepubertal health children (7 boys; aged 6—11 years; median 9.3 years) were included in the study. The levels and composition of carotenoids (lutein with zeaxanthin, lycopene isomers, β-cryptoxanthin, β- and α-carotene and ketocarotenoids) were measured using reverse phase HPLC. Activity of the antioxidant system was assayed via thiobarbituric acid reactive substances (TBARS), ceruloplasmin (CP) levels and total antioxidant capacity (TAC) of plasma. Total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TG) were also measured.

Results. The levels of TBARS, TC and LDL-C in the GHD children were higher than in healthy children (median 5.6 vs 3.8 µM/L, 4.00 vs 4.37 and 2.40 vs 2.70 mM/L, respectively). Total carotenoid level did not significantly differ between control and the GHD groups. However, contents of lutein and β-cryptoxanthin were significantly lower in the GHD children in comparison with control group (21.34 vs 6.97 and 25.23 vs 10.08 mg/l, respectively). In contrast, levels of lycopene, α- and β-carotene did not significantly differ in the GHD and control groups. At the same time, the level of ketocarotenoids in the GHD children increases (35.67 vs 114.9 mg/l).

Conclusions. We observed that the presence of mild oxidative stress leads to a changes in carotenoid profile of GHD children.


Каротиноиды — мощные антиоксиданты, регулирующие многие метаболические процессы в организме. Они также являются предшественниками витамина А, выполняющего важные биологические функции.

Каротиноиды поступают в организм с пищей, затем в составе хиломикронов и липопротеинов очень низкой плотности (ЛПОНП) вместе с лимфой попадают в печень, откуда в составе липопротеинов, особенно липопротеинов низкой плотности (ЛПНП), транспортируются к органам и тканям [1]. В плазме человека среди каротиноидов в наибольших концентрациях присутствуют каротин, β-крип­токсантин, различные изомеры ликопина, а также лютеин и зеаксантин [2] (рис. 1).

Рис. 1. Структурные формулы некоторых каротиноидов, присутствующих в плазме.

Каротиноиды подразделяют на лишенные кислорода каротины (ликопин, α- и β-каротин) и имеющие кислородсодержащие заместители в составе концевых групп ксантофиллы (лютеин, зеаксантин, криптоксантин, а также кетокаротиноиды). Ликопин, а также α- и β-каротины транспортируются в неполярном ядре липопротеинов, состоящем главным образом из триацилглицеридов и холестерина, а лютеин, зеаксантин и β-криптоксантин — во внешнем, более гидрофильном слое липопротеинов, содержащем липиды и белки [1]. Иногда находят также различные кетокаротиноиды, например кантаксантины. Содержание каротиноидов в плазме зависит от возраста, пола, национальной принадлежности, наличия заболеваний, но, как правило, в норме колеблется около 120 мг/л [1].

Ранее было показано, что у детей с недостатком соматотропного гормона (СТГ-дефицитом) наблюдаются некоторые изменения в работе антиоксидантной системы плазмы [3—5]. В частности, в плазме таких детей повышен уровень малонового диальдегида (накапливающегося при деградации полиненасыщенных жирных кислот под действием активных форм кислорода) [3].

Цель работы — оценка уровня и состава каротиноидов плазмы, а также витамина А у детей с СТГ-дефицитом.

Материал и методы

Проведено одномоментное открытое контролируемое обсервационное исследование, в котором приняли участие 13 допубертатных детей с подтвержденным изолированным СТГ-дефицитом (2 девочки, 11 мальчиков в возрасте от 3,5 до 12,0 года (медиана 8,0 года), костный возраст которых составлял 1,5—8 лет (медиана 6 лет). Все пациенты ранее не получали терапию гормоном роста (ГР). Контрольную группу составляли 7 допубертатных здоровых детей (7 мальчиков в возрасте 6—11 лет, медиана 9,3 года). Возраст детей обеих групп значимо не различался.

Всем пациентам проводилось стандартное обследование на базе ФГБУ «Эндокринологический научный центр» Минздрава России, включавшее физикальное обследование и антропометрию, рентгенографию кисти с лучезапястным суставом, лабораторные исследования (общий и биохимический анализ крови, определение уровня инсулиноподобного фактора роста 1 (ИФР-1)). Соматотропная недостаточность у пациентов была подтверждена результатами стимуляционных проб с клофелином и инсулином.

Содержание витамина А в плазме оценивали в лаборатории ООО «ХромсистемсЛаб» (Москва) методом высокоэффективной жидкостной хроматографии (ВЭЖХ).

Для оценки антиоксидантного статуса и содержания каротиноидов в плазме пробы крови брали натощак. Исследования выполнены на биологическом факультете МГУ им. М.В. Ломоносова.

Оценка антиоксидантного статуса плазмы

Оценка антиоксидантного статуса основана на определении количества и активности ряда антиоксидантов в плазме крови, являющихся маркерами стресса. Все измерения оптической плотности проводили на спектрофотометре Hitachi 556 («Hitachi, Ltd.», Япония).

Определение активности церулоплазмина (ЦП) в плазме

ЦП разлагает супероксидный анион-радикал в плазме на воду и кислород без образования пероксида водорода, а также участвует в транспорте, распределении и метаболизме Cu и Fe, инициирующих образование активных форм кислорода. ЦП определяли по методу [6], основанному на ферментативной реакции ЦП с о-фенилендиамином (ОФД), ведущей к образованию окрашенного продукта с максимумом поглощения при 492 нм.

Определение количества продуктов, связанных с 2-тиобарбитуровой кислотой (ТБК-АП) в плазме

Количество ТБК-АП зависит, главным образом, от концентрации малонового диальдегида в плазме — конечного продукта окисления полиненасыщенных липидов активными формами кислорода, являющегося маркером окислительного стресса. Данный метод основывается на экстракции бутанолом продуктов перекисного окисления липидов, образующих с ТБК окрашенные комплексы. Оценка ТБК-АП продуктов проводилась по методу H. Ohkawa и соавт. [7].

Определение общей антиоксидантной активности плазмы (ОААП) по способности восстанавливать железо

ОААП формируется неферментативными водорастворимыми антиоксидантами плазмы, такими как витамин С и продукты распада мочевой кислоты (ураты); ОААП не зависит от активности ферментативных антиоксидантных систем и жирорастворимых антиоксидантов. Измерения проводили по методу как указано в статье М.С. Панкратовой и соавт. [4].

Оценка каротиноидов плазмы методом обращеннофазной высокоэффективной жидкостной хроматографии (ВЭЖХ)

Каротиноиды плазмы экстрагировали по методу Folch [8]: выделенную плазму заливали смесью хлороформа и метанола (2:1 по объему), добавляли 20% воды (по объему), центрифугировали и отбирали хлороформную фазу (экстракт). Аликвоты экстракта (1 мкл) анализировали на ВЭЖХ-хромато­графе Alliance 2995 («Waters», США) с обращеннофазной колонкой Prontosil RP C-18 (150×4,5 мм, 4,6 мкм) при 25 °C и диодно-матричным детектором Waters e2695. Градиентную элюцию пигментов проводили смесью ацетонитрила и воды (85:12 по объему; растворитель А) и этиалцетатом (растворитель Б) по программе [9]; скорость тока 1 мл/мин. Детекцию спектров поглощения вели в диапазоне 400—700 нм. Идентификация и количественная оценка пигментов проводилась с использованием аналитических стандартов («Sigma», США).

Этическая экспертиза

Протокол исследования был рассмотрен и одоб­рен локальным Этическим комитетом ФГБУ «Эндокринологический научный центр» Минздрава России (протокол №14 от 08.10.14).

Статистическая обработка

Использовали демоверсию программы Graphpad Prism 7.0 («GraphPad Software», La Jolla California USA, www.graphpad.com). Данные представлены в виде: медианы [25 и 75 перцентили]. Сравнение данных двух групп проводили с помощью теста Манна—Уитни. Статистически значимыми считались различия при р<0,05.

Результаты

У всех пациентов с СТГ-дефицитом отмечалась выраженная задержка физического развития (значительное снижение SDS роста и скорости роста) по сравнению с контрольной группой (табл. 1).

Таблица 1. Весо-ростовые показатели детей, участвующих в исследовании.

Параметр

Пациенты с СТГ-дефицитом (n=13)

Группа контроля (n=7)

Возраст, годы

8 (4,5; 10)

9,3 (7,1; 10,2)

Костный возраст, годы

6 (2,3; 7,5)

SDS роста

–2,5 (–3,9; –2,2)*

0,58 (–0,9; 1,9)

Скорость роста, см/год

3,4 (2,7; 4,0)*

5,9 (5,3; 6,8)

SDS скорости роста

–2,4 (–3,4; –1,4)*

0,8 (0,3; 0,9)

SDS массы тела

–3 (–3,8; –2,7)*

1,4 (–0,8; 1,6)

SDS индекса массы тела

–1,3 (–2,2; –0,6)*

0,15 (–0,3; 1,2)

Примечание. * — здесь и в табл. 2: р<0,05 (тест Манна—Уитни).

У пациентов с СТГ-дефицитом отмечался сниженный уровень ИФР-1 по сравнению с возрастными нормативами и контрольной группой, а также выраженный липидный дисбаланс. У них наблюдалось также повышенное содержание холестерина ЛПНП и общего холестерина (табл. 2). Уровень витамина А в плазме у детей с недостаточностью СТГ в целом соответствовал норме.

Таблица 2. Биохимические показатели детей, участвующих в исследовании.

Параметр

Пациенты с СТГ-дефицитом (n=13)

Группа контроля (n=7)

Референсные значения

ИФР-1, нг/мл

80,6 (29,3; 104,8)*

186,5 (115,1; 241,7)

50—299

SDS ИФР-1

–1,5 (–4,3; –0,7)

1,2 (–0,4; 1,6)

 

Холестерин общ, ммоль/л

4,4 (4,1; 4,6)*

4,0 (3,7; 4,1)

3,3—5,2

Холестерин ЛПНП, ммоль/л

2,7 (2,5; 3,1)*

2,4 (1,9; 2,4)

1,1—3,0

Холестерин ЛПВП, ммоль/л

1,4 (1,2; 1,6)

1,4 (1,3; 1,7)

0,9—2,6

Триглицериды, ммоль/л

0,7 (0,6; 0,9)

0,6 (0,5; 0,7)

0,1—1,7

Витамин А, мг/л

0,37 (0,29; 0,39)

0,26—0,49

СТГ-дефицит у детей характеризовался повышенным уровнем ТБК-АП при нормальных показателях ОААП и ЦП (рис. 2). Таким образом, можно утверждать, что у детей с СТГ развивается умеренный окислительный стресс, который влияет главным образом на липидный компонент плазмы (липопротеины).

Рис. 2. Параметры антиоксидантной системы плазмы у здоровых детей (1) и детей с соматотропной недостаточностью (2).

а — ОААП; б — уровень ЦП; в — уровень ТБК-АП. Данные представлены в виде коробчатых диаграмм с указанием максимального и минимального значений величин.

* — p<0,05, согласно критерию Манна—Уитни.

В плазме участвующих в исследовании детей были выделены следующие группы каротиноидов (рис. 3): α- и β-каротин, различные изомеры ликопина, β-криптоксантин, различные изомеры лютеина и зеаксантина, а также большое количество кеткаротиноидов (преимущественно, кантаксантин).

Рис. 3. Типичная ВЭЖ-хроматограмма экстракта плазмы (детекция при 455 нм). Амплитуда пиков нормирована на величину максимального пика (1).

1 — β и α-каротины, 2 — цис+транс-ликопин, 3 — β-криптоксантин, 4 — фракции кетокаротиноидов (доминирующий пик — кантаксантин), 5 — лютеин+зеаксантин.

Общее содержание каротиноидов в плазме в контрольной и основной группах практически не различалось, хотя имела место тенденция к увеличению их уровня у детей с дефицитом СТГ (рис. 4, а), возможно, из-за некоторого повышения концентрации ЛПНП. В то же время мы обнаружили изменение профиля каротиноидов в плазме при соматотропной недостаточности. У детей с СТГ-дефицитом были снижены уровни лютеина, зеаксантина и криптоксантина (см. рис. 4, б), тогда как доля каротинов в сумме каротиноидов не отличалась от контроля, а доля кантаксантина значимо превышала контроль.

Рис. 4. Содержание каротиноидов в плазме у детей с СТГ-дефицитом (СТГ) и контрольной группы (контроль).

а — общее содержание основных каротиноидов, б — количество каротиноидов в плазме: 1 — лютеин+зеаксантин, 2 — β-криптоксантин, 3 — ликопин в различных конформациях, 4 — α- и β-каротины, 5 — фракция кетокаротиноидов.

Данные представлены в виде коробчатых диаграмм с указанием максимального и минимального значений величин. * — p<0,05, согласно критерию Манна—Уитни.

Таким образом, плазма детей с СТГ-дефицитом и группы контроля различаются уровнем ксантофиллов.

Обсуждение

У детей с недостаточностью СТГ общий уровень каротиноидов в плазме соответствует таковому в плазме здоровых детей; не изменяется и содержание основных предшественников витамина А – β-каро­тина и ликопина. В то же время у детей с СТГ-дефицитом повышен уровень окисленных каротиноидов (кетокаротиноидов), по-видимому, в результате окисления лютеина, зеаксантина и криптоксантина во внешнем слое ЛПВП. Вероятно, внутреннее ядро липопротеинов, как и локализованные там каротины, в меньшей степени подвергаются воздействию активных форм кислорода. Поскольку при дефиците СТГ общий уровень каротиноидов практически не изменяется, модуляция их состава не должна сказываться на синтезе витамина А, что подтверждается полученными данными.

Заключение

Умеренный окислительный стресс при соматотропной недостаточности у детей сопровождается изменением профиля каротиноидов в плазме. Повышенная доля окисленных каротиноидов в липопротеинах плазмы является дополнительным маркером окислительного стресса у детей с СТГ-дефицитом.

Дополнительная информация

Источник финансирования

Анализ каротиноидного состава плазмы крови выполнен при финансовой поддержке Российского научного фонда (грант 14-50-00029). Анализ антиоксидантного статуса и витамина А проводился в рамках программы «Альфа-Эндо» при финансовой поддержке «Альфа-Групп» и фонда «КАФ».

Конфликт интересов

Конфликт интересов отсутствует.

Участие авторов: концепция и дизайн исследования — Г.В. Максимов, В.А. Петеркова; Сбор и обработка материала — М.С. Панкратова, А.И. Юсипович, А.А. Байжуманов, А.Е. Соловченко, М.В. Воронцова, Т.Т. Князева; Статистическая обработка данных — А.И. Юсипович; Написание текста — М.С. Панкратова, А.И. Юсипович; Редактирование — Т.Ю. Ширяева, В.А. Петеркова

Maria S. Pankratova

Author for correspondence.
ms_pankratova@mail.ru
Endocrinology Research Centre, Moscow
Russian Federation, 11 Dm.Ulyanova street, 117036 Moscow

MD, PhD

Alexander I. Yusipovich

sanyavor@gmail.com
Lomonosov Moscow State University
Russian Federation, 1 Leninskie Gory, 119991 Moscow

PhD

Maria V. Vorontsova

maria.vorontsova.endo@gmail.com
Endocrinology Research Centre, Moscow
Russian Federation, 11 Dm.Ulyanova street, 117036 Moscow

MD

Tila T. Knyazeva

shmushkovich_til@mail.ru
Endocrinology Research Centre, Moscow
Russian Federation, 11 Dm.Ulyanova street, 117036 Moscow

MD

Adil A. Baizhumanov

adilbayzhumanov@icloud.com
Lomonosov Moscow State University
Russian Federation, 1 Leninskie Gory, 119991 Moscow

PhD

Tatiana Y. Shiryaeva

tasha-home@list.ru
Endocrinology Research Centre, Moscow
Russian Federation, 11 Dm.Ulyanova street, 117036 Moscow

MD, PhD

Alexey E. Solovchenko

solovchenko@mail.bio.msu.ru
Lomonosov Moscow State University
Russian Federation, 1 Leninskie Gory, 119991 Moscow

PhD

Georgy V. Maksimov

gmaksimov@mail.ru
Lomonosov Moscow State University
Russian Federation, 1 Leninskie Gory, 119991 Moscow

PhD, Professor

Valentina A. Peterkova

peterkovava@hotmail.com
Endocrinology Research Centre, Moscow
Russian Federation, 11 Dm.Ulyanova street, 117036 Moscow

MD, PhD, Professor

  • Carotenoids in Health and Disease. New York: Marcel Dekker. 2004.
  • Khachik F. Distribution and metabolism of dietary carotenoids in humans as a criterion for development of nutritional supplements. Pure Appl Chem. 2006;78(8):1551-1557. doi: 10.1351/pac200678081551.
  • Mohn A, Marzio D, Giannini C, et al. Alterations in the oxidant-antioxidant status in prepubertal children with growth hormone deficiency: effect of growth hormone replacement therapy. Clinical Endocrinology (Oxford). 2005;63(5):537-542. doi: 10.1111/j.1365-2265.2005.02378.x.
  • Pankratova MS, Baizhumanov AA, Yusipovich AI, et al. Imbalance in the blood antioxidant system in growth hormone-deficient children before and after 1 year of recombinant growth hormone therapy. Peer J. 2015;3:e1055. doi: 10.7717/peerj.1055.
  • Pankratova M, Yusipovich AI, Vorontsova MV, et al. Peculiarities of the blood oxygen and antioxidant status in the children presenting with somatotrophic insufficiency and managed by the substitution treatment with growth hormone. Problemy Endokrinologii. 2012;58(5):10-15. doi: 10.14341/probl201258510-15.
  • Akhalaia MI, Baizhumanov AA, Brazhe NA, et al. Modifying effect of nitric oxide on rat blood plasma proteins and hemoglobin. Dokl Biochem Biophys. 2007;415:222-224. doi: 10.1134/S1607672907040151.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 1979;95(2):351-358. doi: 10.1016/0003-2697(79)90738-3.
  • Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry. 1957;226(1):497-509.
  • Solovchenko AE, Selivanova EA, Chekanov KA, et al. Induction of secondary carotenogenesis in new halophile microalgae from the genus Dunaliella (Chlorophyceae). Biochemistry (Moscow). 2015;80(11):1508-1513. doi: 10.1134/s0006297915110139.

Views

Abstract - 743

PDF (Russian) - 50

Remote (Russian) - 7


Copyright (c) 2017 Pankratova M.S., Yusipovich A.I., Vorontsova M.V., Knyazeva T.T., Baizhumanov A.A., Shiryaeva T.Y., Solovchenko A.E., Maksimov G.V., Peterkova V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.