Уважаемые пользователи!

Данный сайт содержит информацию для людей с медицинским образованием и специалистов здравоохранения.
Входя на сайт, Вы подтверждаете свое согласие с Условиями использования и Политикой конфиденциальности.

Dear visitor!
This site contains medical information for healthcare professionals.
You can go further, if you agree with Terms and Conditions and Privacy Policy on this site.

Problems of the differential diagnosis of MODY3 in obesity

Cover Page
Open Access Open Access
Restricted Access Subscription Access


MODY3 is one of the most common subtypes of MODY. Obesity in MODY3 patients modifies the disease course and complicates diagnostics at the clinical stage.

A proband was diagnosed with type 2 diabetes mellitus (T2DM) at the age of 12 years; metformin therapy was used. A family history of DM involves three generations: the mother, aunt, and maternal grandfather have suffered from insulin-dependent DM since the age of 23, 22, and 40 years, respectively. The patient was examined at the age of 14 years. Obesity was present (SDS BMI 2.3). The insulin and C-peptide levels were 4.4 μU/mL and 1.5 ng/mL, respectively. The HbA1c level was 7.3%. Under glucose load, glycemia reached diabetic values; hyperinsulinemia and insulin resistance were not detected. Specific pancreatic antibodies were absent. Metformin was discontinued, and a sulfonylurea (SU) drug was prescribed, which had a positive effect. The heterozygous mutation p.P291fs was identified in the HNF1A gene. Therefore, MODY3 was verified.

The presence of concomitant obesity in the patient significantly complicates the differential diagnosis, and only a careful comprehensive analysis of clinical and laboratory parameters and a family history makes it possible to suspect the diagnosis of MODY3 (requiring subsequent molecular genetic verification) and prescribe pathogenetic therapy.

Elena A. Sechko

Endocrinology Research Centre

Author for correspondence.
Email: elena.sechko@bk.ru
ORCID iD: 0000-0002-8181-5572
SPIN-code: 4608-5650

Russian Federation, 11, Dm. Ulyanova street, Moscow, 117036


Ekaterina A. Andrianova

Endocrinology Research Centre

Email: katandr13@list.ru
ORCID iD: 0000-0002-6611-8170
SPIN-code: 7496-4580

Russian Federation, 11, Dm. Ulyanova street, Moscow, 117036


Olga N. Ivanova

Endocrinology Research Centre

Email: ion10@bk.ru
ORCID iD: 0000-0002-8366-2004
SPIN-code: 1174-3367

Russian Federation, 11, Dm. Ulyanova street, Moscow, 117036


Tamara L. Kuraeva

Endocrinology Research Centre

Email: diabetkuraeva@mail.ru
ORCID iD: 0000-0003-4950-3920
SPIN-code: 8206-0406

Russian Federation, 11, Dm. Ulyanova street, Moscow, 117036

MD, PhD, Professor

  1. Shields BM, Hicks S, Shepherd MH, et al. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53(12):2504-2508. doi: 10.1007/s00125-010-1799-4.
  2. Schober E, Rami B, Grabert M, et al. Phenotypical aspects of maturity-onset diabetes of the young (MODY diabetes) in comparison with Type 2 diabetes mellitus (T2DM) in children and adolescents: experience from a large multicentre database. Diabetic Medicine. 2009;26(5):466-473. doi: 10.1111/j.1464-5491.2009.02720.x.
  3. Pihoker C, Gilliam LK, Ellard S, et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for Diabetes in Youth. J Clin Endocrinol Metab. 2013;98(10):4055-4062. doi: 10.1210/jc.2013-1279.
  4. Кураева Т.Л., Сечко Е.А., Зильберман Л.И. и др. Молекулярно-генетические и клинические варианты MODY2 и MODY3 у детей в России. // Проблемы эндокринологии. — 2015. — № 5. — С. 14-25. [Kuraeva TL, Sechko EA, Zilberman LI, et al. Molecular genetic and clinical variants MODY2 and MODY3 in children in Russia. Problems of Endocrinology. 2016;61(5):14-25. (In Russ.)]. doi: 10.14341/probl2015615.
  5. Yamagata K, Oda N, Kaisaki PJ, et al. Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3). Nature. 1996;384(6608):455-458. doi: 10.1038/384455a0.
  6. Ellard S, Bellanné-Chantelot C, Hattersley AT. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia. 2008;51(4):546-553. doi: 10.1007/s00125-008-0942-y.
  7. Shih DQ, Screenan S, Munoz KN, et al. Loss of HNF-1 Function in Mice Leads to Abnormal Expression of Genes Involved in Pancreatic Islet Development and Metabolism. Diabetes. 2001;50(11):2472-2480. doi: 10.2337/diabetes.50.11.2472.
  8. Еремина И.А., Кураева Т.Л., Зильберман Л.И. и др. Клинический полиморфизм сахарного диабета 2-го типа в детском возрасте — первое исследование в России. // Проблемы эндокринологии. — 2015. — № 6. — С. 10-16.[Eremina IA, Kuraeva TL, Zilberman LI, et al. Clinical polymorphism of type 2 diabetes in children — the first study in Russia. Problems of Endocrinology. 2015;61(6):10-16. (In Russ.)]. doi: 10.14341/probl201561610-16.
  9. Stride A, Vaxillaire M, Tuomi T, et al. The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia. 2002;45(3):427-435. doi: 10.1007/s00125-001-0770-9.
  10. Pearson E R, Velho G, Clark P, et al. Beta-cell genes and diabetes: quantitative and qualitative differences in the pathophysiology of hepatic nuclear factor-1alpha and glucokinase mutations. Diabetes. 2001;50(Suppl 1):S101-S107. doi: 10.2337/diabetes.50.2007.s101.
  11. Lehto M, Tuomi T, Mahtani MM, et al. Characterization of the MODY3 phenotype. Early-onset diabetes caused by an insulin secretion defect. J Clin Invest. 1997;99(4):582-591. doi: 10.1172/JCI119199.
  12. Pontoglio M, Prié D, Cheret C, et al. HNF1α controls renal glucose reabsorption in mouse and man. EMBO Rep. 2000;1(4):359-365. doi: 10.1093/embo-reports/kvd071.
  13. Isomaa B, Henricsson M, Lehto M, et al. Chronic diabetic complications in patients with MODY3 diabetes. Diabetologia. 1998;41(4):467-473. doi: 10.1007/s001250050931.
  14. Tattersall RB, Fajans SS. A difference between the inheritance of classical juvenile-onset and maturity-onset type diabetes of young people. Diabetes. 1975;24(1):44-53. doi: 10.2337/diabetes.24.1.44.
  15. Shepherd M, Pearson ER, Houghton J, et al. No Deterioration in Glycemic Control in HNF-1. Maturity-onset diabetes of the young following transfer from long-term insulin to sulphonylureas. Diabetes Care. 2003;26(11):3191-3192. doi: 10.2337/diacare.26.11.3191-a.
  16. Shepherd M, Shields B, Ellard S, et al. A genetic diagnosis of HNF1α diabetes alters treatment and improves glycaemic control in the majority of insulin-treated patients. Diabetic Medicine. 2009;26(4):437-441. doi: 10.1111/j.1464-5491.2009.02690.x.
  17. Pearson E R, Starkey BJ, Powell RJ, et al. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet. 2003;362(9392):1275-1281. doi: 10.1016/s0140-6736(03)14571-0.
  18. Thanabalasingham G, Owen KR. Diagnosis and management of maturity onset diabetes of the young (MODY). BMJ. 2011;343(oct19 3):d6044-d6044. doi: 10.1136/bmj.d6044.

Supplementary files

Supplementary Files Action
1. Fig. 1. Bloodline of the proband family. View (164KB) Indexing metadata
2. Fig. 2. Indicators of glycemia in various therapy regimens. View (87KB) Indexing metadata


Abstract - 443

PDF (Russian) - 9

Remote (Russian) - 226


Copyright (c) 2018 Sechko E.A., Andrianova E.A., Ivanova O.N., Kuraeva T.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.