Уважаемые пользователи!

Данный сайт содержит информацию для людей с медицинским образованием и специалистов здравоохранения.
Входя на сайт, Вы подтверждаете свое согласие с Условиями использования и Политикой конфиденциальности.



Dear visitor!
This site contains medical information for healthcare professionals.
You can go further, if you agree with Terms and Conditions and Privacy Policy on this site.

Phenotyping animal models of diabetic peripheral neuropathy in rats: advantages and limitations

Cover Page
Open Access Open Access
Restricted Access Subscription Access

Abstract


Diabetic polyneuropathy is one of the most common late complications of diabetes mellitus, as well as the main cause of ulcerative foot defects. The prevalence of neuropathy among people with diabetes varies from 28 to 65%, depending on the disease duration and diagnostic features. Initial signs of damage are detected as early as in prediabetes. To date, there is a fairly limited knowledge of the mechanisms of nerve fiber damage in diabetes. Also, it is unclear which type of nerve fibers is involved in damage first and how the nervous system regulates repair of tissues and local immunity. Animal models of diabetic peripheral neuropathy enable studying new aspects of the pathogenesis of this common diabetes complication and open prospects for the search and development of new drugs.


Zera N. Abdulvapova

Endocrinology Research Centre

Email: zera1987@mail.ru
ORCID iD: 0000-0002-1129-8995
SPIN-code: 4455-5667

Russian Federation, 11, Dm. Ulyanova street, Moscow, 117036

MD

Ekaterina V. Artemova

Endocrinology Research Centre

Author for correspondence.
Email: profilaktika@bk.ru
ORCID iD: 0000-0002-2232-4765
SPIN-code: 4649-0765

Russian Federation, 11, Dm. Ulyanova street, Moscow, 117036

MD

Anna M. Gorbacheva

Lomonosov Moscow State University

Email: ann.gorbachewa@yandex.ru

Russian Federation, 1, Leninskie gory, Moscow, 119991

MD

Gagik R. Galstyan

Endocrinology Research Centre

Email: galstyangagik964@gmail.com
ORCID iD: 0000-0001-6581-4521
SPIN-code: 9815-7509

Russian Federation, 11, Dm. Ulyanova street, Moscow, 117036

PhD, professor

Alla Yu. Tokmakova

Endocrinology Research Centre

Email: alla-tokmakova@yandex.ru
ORCID iD: 0000-0003-2474-9924
SPIN-code: 7479-7043

Russian Federation, 11, Dm. Ulyanova street, Moscow, 117036

PhD

Svetlana A. Gavrilova

Lomonosov Moscow State University

Email: sgavrilova@mail.ru
ORCID iD: 0000-0002-8776-6062
SPIN-code: 9212-1137

Russian Federation, 1, Leninskie gory, Moscow, 119991

PhD

  • Gordois A, Scuffham P, Shearer A, et al. The health care costs of diabetic peripheral neuropathy in the U.S. Diabetes Care. 2003;26(6):1790-1795. doi: 10.2337/diacare.26.6.1790.
  • Ziegler D, Strom A, Lobmann R, et al. High prevalence of diagnosed and undiagnosed polyneuropathy in subjects with and without diabetes participating in a nationwide educational initiative (PROTECT study). J Diabetes Complications. 2015; 29(8):998-1002. doi: 10.1016/j.jdiacomp.2015.09.008.
  • Biessels GJ, Bril V, Calcutt NA, et al. Phenotyping animal models of diabetic neuropathy: a consensus statement of the diabetic neuropathy study group of the EASD (Neurodiab). J Peripher Nerv Syst. 2014;19(2):77-87. doi: 10.1111/jns5.12072.
  • Davidson E, Coppey L, Lu B, et al. The roles of streptozotocin neurotoxicity and neutral endopeptidase in murine experimental diabetic neuropathy. Exp Diabetes Res. 2009;2009:431980. doi: 10.1155/2009/431980.
  • Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216-226. doi: 10.1007/s00125-007-0886-7.
  • Sima AA, Zhang W, Xu G, et al. A comparison of diabetic polyneuropathy in type II diabetic BBZDR/Wor rats and in type I diabetic BB/Wor rats. Diabetologia. 2000;43(6):786-793. doi: 10.1007/s00125005137.
  • Sullivan KA, Hayes JM, Wiggin TD, et al. Mouse models of diabetic neuropathy. Neurobiol Dis. 2007;28(3):276-285. doi: 10.1016/j.nbd.2007.07.022.
  • Choeiri C, Hewitt K, Durkin J, et al. Longitudinal evaluation of memory performance and peripheral neuropathy in the Ins2C96Y Akita mice. Behav Brain Res. 2005;157(1):31-38. doi: 10.1016/j.bbr.2004.06.005.
  • Chang H-J, Gurley SB. Assessment of Diabetic Nephropathy in the Akita Mouse. In: Joost HG, Al-Hasani H, Schürmann A, editors. Animal Models in Diabetes Research. New York: Humana Press; 2012;17-29. doi: 10.1007/978-1-62703-068-7.
  • Schmidt I. Metabolic diseases: the environment determines the Odds, even for genes. News Physiol Sci. 2002;17(3):115-121. doi: 10.1152/nips.01380.2001.
  • Clark JB, Palmer CJ, Shaw WN. The Diabetic Zucker Fatty Rat. Proc Soc Exp Biol Med. 1983;173(1):68-75. doi: 10.3181/00379727-173-41611.
  • Schmidt RE, Dorsey DA, Beaudet LN, Peterson RG. Analysis of the Zucker Diabetic Fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy. Am J Path. 2003;163(1):21-28. doi: 10.1016/s0002-9440(10)63626-7.
  • Jaggi AS, Jain V, Singh N. Animal models of neuropathic pain. Fundam Clin Pharmacol. 2011;25(1):1-28. doi: 10.1111/j.1472-8206.2009.00801.x.
  • Lirk P, Flatz M, Haller I, et al. In Zucker diabetic fatty rats, subclinical diabetic neuropathy increases in vivo lidocaine block duration but not in vitro neurotoxicity. Reg Anesth Pain Med. 2012;37(6):601-606. doi: 10.1097/AAP.0b013e3182664afb.
  • Li F, Abatan OI, Kim H, et al. Taurine reverses neurological and neurovascular deficits in Zucker diabetic fatty rats. Neurobiol Dis. 2006;22(3):669-676. doi: 10.1016/j.nbd.2006.01.012.
  • Lupachyk S, Watcho P, Hasanova N, et al. Triglyceride, nonesterified fatty acids, and prediabetic neuropathy: role for oxidative-nitrosative stress. Free Radic Biol Med. 2012;52(8):1255-1263. doi: 10.1016/j.freeradbiomed.2012.01.029.
  • Lupachyk S, Watcho P, Obrosov AA, et al. Endoplasmic reticulum stress contributes to prediabetic peripheral neuropathy. Exp Neurol. 2013;247:342-348. doi: 10.1016/j.expneurol.2012.11.001.
  • Oltman CL, Davidson EP, Coppey LJ, et al. Vascular and neural dysfunction in Zucker diabetic fatty rats: a difficult condition to reverse. Diabetes Obes Metab. 2008;10(1):64-74. doi: 10.1111/j.1463-1326.2007.00814.x.
  • Oltman CL, Davidson EP, Coppey LJ, et al. Treatment of Zucker diabetic fatty rats with AVE7688 improves vascular and neural dysfunction. Diabetes Obes Metab. 2009;11(3):223-233. doi: 10.1111/j.1463-1326.2008.00924.x.
  • Sasase T, Ohta T, Masuyama T, et al. The spontaneously diabetic torii rat: an animal model of nonobese type 2 diabetes with severe diabetic complications. J Diabetes Res. 2013;2013:976209. doi: 10.1155/2013/976209.
  • Shinohara M, Masuyama T, Shoda T, et al. A new spontaneously diabetic non-obese Torii rat strain with severe ocular complications. Int J Exp Diabetes Res. 2000;1(2):89-100. doi: 10.1155/edr.2000.89.
  • Masuyama T, Komeda K, Hara A, et al. Chronological characterization of diabetes development in male spontaneously diabetic Torii rats. Biochem Biophys Res Commun. 2004;314(3):870-877. doi: 10.1016/j.bbrc.2003.12.18.
  • Yamaguchi T, Sasase T, Mera Y, et al. Diabetic peripheral neuropathy in spontaneously diabetic Torii-Leprfa (SDT Fatty) rats. J Vet Med Sci. 2012;74(12):1669-1673. doi: 10.1292/jvms.12-0149.
  • Matsumoto T, Ono Y, Kuromiya A, et al. Long-term treatment with ranirestat (AS-3201), a potent aldose reductase inhibitor, suppresses diabetic neuropathy and cataract formation in rats. J Pharmacol Sci. 2008;107(3):340-348. doi: 10.1254/jphs.08071FP.
  • Yamada K, Hosokawa M, Fujimoto S, et al. The spontaneously diabetic Torii rat with gastroenteropathy. Diabetes Res Clin Pract. 2007;75(2):127-134. doi: 10.1016/j.diabres.2006.06.034.
  • Sasase T, Morinaga H, Yamamoto H, et al. Increased fat absorption and impaired fat clearance cause postprandial hypertriglyceridemia in spontaneously diabetic Torii rat. Diabetes Res Clin Pract. 2007;78(1):8-15. doi: 10.1016/j.diabres.2007.02.020.
  • Davidson EP, Coppey LJ, Holmes A, et al. Characterization of diabetic neuropathy in the Zucker diabetic Sprague-Dawley rat: a new animal model for type 2 diabetes. J Diabetes Res. 2014;2014:714273. doi: 10.1155/2014/714273.
  • Gonzalez AD, Gallant MA, Burr DB, Wallace JM. Multiscale analysis of morphology and mechanics in tail tendon from the ZDSD rat model of type 2 diabetes. J Biomech. 2014;47(3):681-686. doi: 10.1016/j.jbiomech.2013.11.045.
  • Coppey L, Davidson E, Lu B, et al. Vasopeptidase inhibitor ilepatril (AVE7688) prevents obesity- and diabetes-induced neuropathy in C57Bl/6J mice. Neuropharmacology. 2011;60(2-3):259-266. doi: 10.1016/j.neuropharm.2010.09.008.
  • Coppey LJ, Gellett JS, Davidson EP, et al. Changes in endoneurial blood flow, motor nerve conduction velocity and vascular relaxation of epineurial arterioles of the sciatic nerve in ZDF-obese diabetic rats. Diabetes Metab Res Rev. 2002;18(1):49-56. doi: 10.1002/dmrr.257.
  • Davidson EP, Coppey LJ, Calcutt NA, et al. Diet-induced obesity in Sprague-Dawley rats causes microvascular and neural dysfunction.Diabetes Metab Res Rev. 2010;26(4):306-318. doi: 10.1002/dmrr.1088.
  • Oltman CL, Coppey LJ, Gellett JS, et al. Progression of vascular and neural dysfunction in sciatic nerves of Zucker diabetic fatty and Zucker rats. Am J Physiol Endocrinol Metab. 2005;289(1):E113-E122. doi: 10.1152/ajpendo.00594.2004.
  • Akash M, Rehman K, Chen S. Goto-kakizaki rats: its suitability as non-obese diabetic animal model for spontaneous type 2 diabetes mellitus.Curr Diabetes Rev. 2013;9(5):387-396. doi: 10.2174/15733998113099990069.
  • Wang F, Gao N, Yin J, Yu FS. Reduced innervation and delayed re-innervation after epithelial wounding in type 2 diabetic Goto-Kakizaki rats. Am J Pathol. 2012;181(6):2058-2066. doi: 10.1016/j.ajpath.2012.08.029.
  • Tirabassi RS, Flanagan JF, Wu T, et al. The BBZDR/Wor Rat Model for investigating the complications of type 2 diabetes mellitus. ILAR Journal. 2004;45(3):292-302. doi: 10.1093/ilar.45.3.292.
  • Kamenov Z, Higashino H, Todorova M, et al. Physiological characteristics of diabetic neuropathy in sucrose-fed Otsuka long-evans Tokushima fatty rats. Methods Find Exp Clin Pharmacol. 2006;28(1):13-18. doi: 10.1358/mf.2006.28.1.962772.
  • Nakamura J, Hamada Y, Sakakibara F, et al. Physiological and morphometric analyses of neuropathy in sucrose-fed OLETF rats. Diabetes Res Clin Pract. 2001;51(1):9-20. doi: 10.1016/s0168-8227(00)00205-9.

Supplementary files

There are no supplementary files to display.

Views

Abstract - 123

PDF (Russian) - 3

Remote (Russian) - 68

PlumX


Copyright (c) 2018 Abdulvapova Z.N., Artemova E.V., Gorbacheva A.M., Galstyan G.R., Tokmakova A.Y., Gavrilova S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.