Уважаемые пользователи!

Данный сайт содержит информацию для людей с медицинским образованием и специалистов здравоохранения.
Входя на сайт, Вы подтверждаете свое согласие с Условиями использования и Политикой конфиденциальности.



Dear visitor!
This site contains medical information for healthcare professionals.
You can go further, if you agree with Terms and Conditions and Privacy Policy on this site.

Vildagliptin: ten years in the service for type 2 diabetes mellitus patients. The journey of discovery, innovation and success in clinical practice

Cover Page
Open Access Open Access
Restricted Access Subscription Access

Abstract


Type 2 diabetes mellitus is a multifactorial multiorgan disease. Over the last decade, the implementation of brand-new therapeutic opportunities led to tremendous rise of research studies in the field of diabetes as well as to shift in priorities of the management of patients with type 2 diabetes from a glucocentric approach and towards holistic control of the key underlying pathophysiological processes of the disease development and progression. The use of dipeptidyl peptidase-4 inhibitors shows good glycemic control because of physiological glucose — dependent mechanism of action mediated with the improvement of incretin hormones effects. Moreover, dipeptidyl peptidase-4 inhibitors have a wide range of pleiotropic effects owning to additional properties of incretins and inhibition of dipeptidyl peptidase enzymatic activity, which leads to beneficial impact on metabolic and pathogenetic processes of type 2 diabetes mellitus. Dipeptidyl peptidase-4 inhibitors are effective drugs with good safety profile as for risks related to type 2 diabetes and have no limitative disadvantages such as hypoglycemia and weight gain. This publication reviews vildagliptin, the first developed dipeptidyl peptidase-4 inhibitor, with an emphasis on its use in different clinical settings of diabetes management.


Tatiana Yu. Demidova

Pirogov Russian National Research Medical University; Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: t.y.demidova@gmail.com
Scopus Author ID: 7003771623
ResearcherId: D-3425-2018

Russian Federation, 1, Ostrovityanova street, Moscow, 117997; 2/1, Barrikadnaya st., Moscow, 125993

MD, PhD, Professor

  1. Del Prato S. Ten уears of vildagliptin. Eur Endocrinol. 2017;13(2): 54-55. doi: https://doi.org/10.17925/EE.2017.13.02.54
  2. Ahrén B, Foley JE. The vildagliptin experience — 25 years since. The Initiation Of The Novartis Foley Je, Ahren B. The Vildagliptin Experience — 25 Years Since The Initiation Of The Novartis Glucagon-Like Peptide-1 Based Therapy Programme And 10 Years Since The First Vildagliptin Registration. Eur Endocrinol. 2017;13(2):56-61. doi: https://doi.org/10.17925/Ee.2017.13.02.56
  3. Виллхауэр Э. Вилдаглиптин: первый инновационный ингибитор ДПП-4. // Сахарный диабет. —2010. — Т. 13. — №3. — С. 118-120. [Wilhauer E. Vildagliptin: the first innovative DDP-4 inhibitor. Diabetes Mellitus. 2010;13(3):118-120. (In Russ.)]. doi: https://doi.org/10.14341/2072-0351-5499
  4. Strain WD, Paldanius PM. Dipeptidyl peptidase-4 inhibitor development and post-authorisation programme for vildagliptin — clinical evidence for optimised management of chronic diseases beyond type 2 diabetes. Eur Endocrinol. 2017;13(2):62-67. doi: https://doi.org/10.1795/EE.2017.13.02.62
  5. Kozlovski P, Paldanius PM, et al. Clinical Safety and Tolerability of Vildagliptin - Insights from Randomised Trials, Observational Studies and Post-marketing Surveillance. Eur Endocrinol. 2017;13(2):68-72. doi: https://doi.org/10.17925/EE.2017.13.02.68
  6. Nauck MA, Homberger E, Siegel EG, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. 1986;63(2):492-498. doi: https://doi.org/10.1210/jcem-63-2-492
  7. Nauck MA. Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am J Med. 2011;124(1 Suppl):S3-S18. doi: https://doi.org/10.1016/j.amjmed.2010.11.002
  8. Ahren B, Schweizer A, Dejager S, et al. Vildagliptin enhances islet responsiveness to both hyper- and hypoglycemia in patients with type 2 diabetes. J Clin Endocrinol Metab. 2009;94(4):1236-1243. doi: https://doi.org/10.1210/jc.2008-2152
  9. Farngren J, Persson M, Schweizer A, et al. Glucagon dynamics during hypoglycaemia and food-re-challenge following treatment with vildagliptin in insulin-treated patients with type 2 diabetes. Diabetes Obes Metab. 2014;16(9):812-818. doi: https://doi.org/10.1111/dom.12284
  10. Michaliszyn SF, Mari A, Lee S, et al. beta-Cell function, incretin effect, and incretin hormones in obese youth along the span of glucose tolerance from normal to prediabetes to type 2 diabetes. Diabetes. 2014;63(11):3846-3855. doi: https://doi.org/10.2337/db13-1951
  11. Ahren B, Foley JE. Improved glucose regulation in type 2 diabetic patients with DPP-4 inhibitors: focus on alpha and beta cell function and lipid metabolism. Diabetologia. 2016;59(5):907-917. doi: https://doi.org/10.1007/s00125-016-3899-2
  12. Bae EJ. Erratum to: DPP-4 inhibitors in diabetic complications: role of DPP-4 beyond glucose control. Arch Pharm Res. 2016;39(9):1335. doi: https://doi.org/10.1007/s12272-016-0832-7
  13. Chon S, Gautier JF. An Update on the Effect of Incretin-Based Therapies on beta-Cell Function and Mass. Diabetes Metab J. 2016;40(2):99-114. doi: https://doi.org/10.4093/dmj.2016.40.2.99
  14. Mari A, Sallas WM, He YL, et al. Vildagliptin, a dipeptidyl peptidase-IV inhibitor, improves model-assessed beta-cell function in patients with type 2 diabetes. J Clin Endocrinol Metab. 2005;90(8):4888-4894. doi: https://doi.org/10.1210/jc.2004-2460
  15. Mari A, Scherbaum WA, Nilsson PM, et al. Characterization of the influence of vildagliptin on model-assessed -cell function in patients with type 2 diabetes and mild hyperglycemia. J Clin Endocrinol Metab. 2008;93(1):103-109. doi: https://doi.org/10.1210/jc.2007-1639
  16. Rosenstock J, Foley JE, Rendell M, et al. Effects of the dipeptidyl peptidase-IV inhibitor vildagliptin on incretin hormones, islet function, and postprandial glycemia in subjects with impaired glucose tolerance. Diabetes Care. 2008;31(1):30-35. doi: https://doi.org/10.2337/dc07-1616
  17. He YL, Wang Y, Bullock JM, et al. Pharmacodynamics of vildagliptin in patients with type 2 diabetes during OGTT. J Clin Pharmacol. 2007;47(5):633-641. doi: https://doi.org/10.1177/0091270006299137
  18. Drucker DJ. Enhancing Incretin Action for the Treatment of Type 2 Diabetes. Diabetes Care. 2003;26(10):2929-2940. doi: https://doi.org/10.2337/diacare.26.10.2929
  19. Kothari V, Galdo JA, Mathews ST. Hypoglycemic agents and potential anti-inflammatory activity. J Inflamm Res. 2016;9:27-38. doi: https://doi.org/10.2147/JIR.S86917
  20. Ottobelli Chielle E, de Souza WM, da Silva TP, et al. Adipocytokines, inflammatory and oxidative stress markers of clinical relevance altered in young overweight/obese subjects. Clin Biochem. 2016;49(7-8):548-553. doi: https://doi.org/10.1016/j.clinbiochem.2016.01.003
  21. Sell H, Bluher M, Kloting N, et al. Adipose dipeptidyl peptidase-4 and obesity: correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care. 2013;36(12):4083-4090. doi: https://doi.org/10.2337/dc13-0496
  22. Lamers D, Famulla S, Wronkowitz N, et al. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes. 2011;60(7):1917-1925. doi: https://doi.org/10.2337/db10-1707
  23. Zhong J, Maiseyeu A, Davis SN, Rajagopalan S. DPP4 in cardiometabolic disease: recent insights from the laboratory and clinical trials of DPP4 inhibition. Circ Res. 2015;116(8):1491-1504. doi: https://doi.org/10.1161/CIRCRESAHA.116.305665
  24. Ahmed RH, Huri HZ, Muniandy S, et al. Altered circulating concentrations of active glucagon-like peptide (GLP-1) and dipeptidyl peptidase 4 (DPP4) in obese subjects and their association with insulin resistance. Clin Biochem. 2017;50(13-14):746-749. doi: https://doi.org/10.1016/j.clinbiochem.2017.03.008
  25. Barbieri M, Rizzo MR, Marfella R, et al. Decreased carotid atherosclerotic process by control of daily acute glucose fluctuations in diabetic patients treated by DPP-IV inhibitors. Atherosclerosis. 2013;227(2):349-354. doi: https://doi.org/10.1016/j.atherosclerosis.2012.12.018
  26. Hatwal A. Inflammation and incretins. Indian J Endocrinol Metab. 2012;16(Suppl 2):S239-S241. doi:https://doi.org/10.4103/2230-8210.104049 27
  27. Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99-103. doi: https://doi.org/10.1038/nature12198
  28. Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut. 2014;63(9):1513-1521. doi: https://doi.org/10.1136/gutjnl-2014-306928
  29. Grasset E, Puel A, Charpentier J, et al. A Specific Gut Microbiota Dysbiosis of Type 2 Diabetic Mice Induces GLP-1 Resistance through an Enteric NO-Dependent and Gut-Brain Axis Mechanism. Cell Metab. 2017;25(5):1075-1090 e1075. doi: https://doi.org/10.1016/j.cmet.2017.04.013
  30. Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262-266. doi: https://doi.org/10.1038/nature15766
  31. Lv Y, Zhao X, Guo W, et al. The Relationship between Frequently Used Glucose-Lowering Agents and Gut Microbiota in Type 2 Diabetes Mellitus. J Diabetes Res. 2018;2018:1890978. doi: https://doi.org/10.1155/2018/1890978
  32. Zhang Q, Xiao X, Li M, et al. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats. PLoS One. 2017;12(10):e0184735. doi: https://doi.org/10.1371/journal.pone.0184735
  33. Olivares M, Neyrinck AM, Potgens SA, et al. The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice. Diabetologia. 2018;61(8):1838-1848. doi: https://doi.org/10.1007/s00125-018-4647-6
  34. Finan B, Muller TD, Clemmensen C, et al. Reappraisal of GIP Pharmacology for Metabolic Diseases. Trends Mol Med. 2016;22(5):359-376. doi: https://doi.org/10.1016/j.molmed.2016.03.005
  35. Schweizer A, Couturier A, Foley JE, Dejager S. Comparison between vildagliptin and metformin to sustain reductions in HbA1c over 1 year in drug-naive patients with Type 2 diabetes. Diabet Med. 2007;24(9):955-961. doi: https://doi.org/10.1111/j.1464-5491.2007.02191.x
  36. Goke B, Hershon K, Kerr D, et al. Efficacy and safety of vildagliptin monotherapy during 2-year treatment of drug-naive patients with type 2 diabetes: comparison with metformin. Horm Metab Res. 2008;40(12):892-895. doi: https://doi.org/10.1055/s-0028-1082334
  37. Evans M, Schweizer A, Foley JE. An approach to reporting pooled HbA1c reductions to maximize the accuracy of between — drug comparisons: HbA1c reductions with vildagliptin monotherapy. Diabetes. 2015;(64):suppl. 1:A332.
  38. Bosi E, Dotta F, Jia Y, Goodman M. Vildagliptin plus metformin combination therapy provides superior glycaemic control to individual monotherapy in treatment-naive patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2009;11(5):506-515. doi: https://doi.org/10.1111/j.1463-1326.2009.01040.x
  39. Bosi E, Camisasca RP, Collober C, et al. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Care. 2007;30(4):890-895. doi: https://doi.org/10.2337/dc06-1732
  40. Matthews DR, Dejager S, Ahren B, et al. Vildagliptin add-on to metformin produces similar efficacy and reduced hypoglycaemic risk compared with glimepiride, with no weight gain: results from a 2-year study. Diabetes Obes Metab. 2010;12(9):780-789. doi: https://doi.org/10.1111/j.1463-1326.2010.01233.x
  41. Ferrannini E, Fonseca V, Zinman B, et al. Fifty-two-week efficacy and safety of vildagliptin vs. glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin monotherapy. Diabetes Obes Metab. 2009;11(2):157-166. doi: https://doi.org/10.1111/j.1463-1326.2008.00994.x
  42. Lukashevich V, Del Prato S, Araga M, Kothny W. Efficacy and safety of vildagliptin in patients with type 2 diabetes mellitus inadequately controlled with dual combination of metformin and sulphonylurea. Diabetes Obes Metab. 2014;16(5):403-409. doi: https://doi.org/10.1111/dom.12229
  43. Fonseca V, Schweizer A, Albrecht D, et al. Addition of vildagliptin to insulin improves glycaemic control in type 2 diabetes. Diabetologia. 2007;50(6):1148-1155. doi: https://doi.org/10.1007/s00125-007-0633-0
  44. Ved P, Shah S. Evaluation of vildagliptin and fixed dose combination of vildagliptin and metformin on glycemic control and insulin dose over 3 months in patients with type 2 diabetes mellitus. Indian J Endocrinol Metab. 2012;16 Suppl 1:S110-S113. doi: https://doi.org/10.4103/2230-8210.94258
  45. Aroda VR, Henry RR, Han J, et al. Efficacy of GLP-1 receptor agonists and DPP-4 inhibitors: metaanalysis and systematic review. Clin Ther. 2012;34(6):1247-1258:e1222. doi: https://doi.org/10.1016/j.clinthera.2012.04.013
  46. Esposito K, Chiodini P, Maiorino MI, et al. A nomogram to estimate the HbA1c response to different DPP-4 inhibitors in type 2 diabetes: a systematic review and metaanalysis of 98 trials with 24 163 patients. BMJ Open. 2015;5(2):e005892. doi: https://doi.org/10.1136/bmjopen-2014-005892
  47. Monnier L, Lapinski H, Colette C. Contributions of Fasting and Postprandial Plasma Glucose Increments to the Overall Diurnal Hyperglycemia of Type 2 Diabetic Patients: Variations with increasing levels of HbA1c. Diabetes Care. 2003;26(3):881-885. doi: https://doi.org/10.2337/diacare.26.3.881
  48. Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681-1687. doi: https://doi.org/10.1001/jama.295.14.1681
  49. Marso SP, McGuire DK, Zinman B, et al. Efficacy and Safety of Degludec versus Glargine in Type 2 Diabetes. N Engl J Med. 2017;377(8):723-732. doi: https://doi.org/10.1056/NEJMoa1615692
  50. Rizzo MR, Barbieri M, Marfella R, Paolisso G. Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: role of dipeptidyl peptidase-IV inhibition. Diabetes Care. 2012;35(10):2076-2082. doi: https://doi.org/10.2337/dc12-0199
  51. Xiaoyan C, Jing W, Xiaochun H, et al. Effects of vildagliptin versus saxagliptin on daily acute glucose fluctuations in Chinese patients with T2DM inadequately controlled with a combination of metformin and sulfonylurea. Curr Med Res Opin. 2016;32(6):1131-1136. doi: https://doi.org/10.1185/03007995.2016.1162773
  52. Clinicaltrials.gov [Internet]. VERIFY: A study to compare combination regimen with vildagliptin & metformin versus metformin in treatment-naive patients with type 2 diabetes mellitus [cited 2018 Apr 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT01528254?term= vildagliptin+VERIFY&rank=1
  53. Ahren B, Mathieu C, Bader G, et al. Efficacy of vildagliptin versus sulfonylureas as add-on therapy to metformin: comparison of results from randomised controlled and observational studies. Diabetologia. 2014;57(7):1304-1307. doi: https://doi.org/10.1007/s00125-014-3222-z
  54. Schweizer A, Dejager S. Experience with vildagliptin in patients >/=75 years with type 2 diabetes and moderate or severe renal impairment. Diabetes Ther. 2013;4(2):257-267. doi: https://doi.org/10.1007/s13300-013-0027-x
  55. McMurray JJV, Ponikowski P, Bolli GB, et al. Effects of Vildagliptin on Ventricular Function in Patients With Type 2 Diabetes Mellitus and Heart Failure: A Randomized Placebo-Controlled Trial. JACC Heart Fail. 2018;6(1):8-17. doi: https://doi.org/10.1016/j.jchf.2017.08.004
  56. Guo WQ, Li L, Su Q, et al. Effect of Dipeptidyl Peptidase-4 Inhibitors on Heart Failure: A Network Metaanalysis. Value Health. 2017;20(10):1427-1430. doi: https://doi.org/10.1016/j.jval.2017.04.010
  57. McInnes G, Evans M, Del Prato S, et al. Cardiovascular and heart failure safety profile of vildagliptin: a metaanalysis of 17 000 patients. Diabetes Obes Metab. 2015;17(11):1085-1092. doi: https://doi.org/10.1111/dom.12548
  58. Macauley M, Hollingsworth KG, Smith FE, et al. Effect of vildagli ptin on hepatic steatosis. J Clin Endocrinol Metab. 2015;100(4):1578-1585. doi: https://doi.org/10.1210/jc.2014-3794
  59. Mathieu C, Barnett AH, Brath H, et al. Effectiveness and tolerability of second-line therapy with vildagliptin vs. other oral agents in type 2 diabetes: a real-life worldwide observational study (EDGE). Int J Clin Pract. 2013;67(10):947-956. doi: https://doi.org/10.1111/ijcp.12252
  60. Rosales R, Abou Jaoude E, Al-Arouj M, et al. Clinical effectiveness and safety of vildagliptin in >19 000 patients with type 2 diabetes: the GUARD study. Diabetes Obes Metab. 2015;17(6):603-607. doi: https://doi.org/10.1111/dom.12436
  61. Bluher M, Kurz I, Dannenmaier S, Dworak M. Efficacy and safety of vildagliptin in clinical practice-results of the PROVIL-study. World J Diabetes. 2012;3(9):161-169. doi: https://doi.org/10.4239/wjd.v3.i9.161
  62. Kolaczynski WM, Hankins M, Ong SH, et al. Microvascular Outcomes in Patients with Type 2 Diabetes Treated with Vildagliptin vs. Sulfonylurea: A Retrospective Study Using German Electronic Medical Records. Diabetes Ther. 2016;7(3):483-496. doi: https://doi.org/10.1007/s13300-016-0177-8
  63. Eriksson JW, Bodegard J, Nathanson D, et al. Sulphonylurea compared to DPP-4 inhibitors in combination with metformin carries increased risk of severe hypoglycemia, cardiovascular events, and all-cause mortality. Diabetes Res Clin Pract. 2016;117:39-47. doi: https://doi.org/10.1016/j.diabres.2016.04.055
  64. Williams R, de Vries F, Kothny W, et al. Cardiovascular safety of vildagliptin in patients with type 2 diabetes: A European multi-database, non-interventional post-authorization safety study. Diabetes Obes Metab. 2017;19(10):1473-1478. doi: https://doi.org/10.1111/dom.12951

Supplementary files

Supplementary Files Action
1. Fig. 1. Changes in the level of HbA1c in groups with different therapy of T2DM [38]. View (172KB) Indexing metadata
2. Fig. 2. The average change in the level of HbA1c (A) and GPN (B) in patients receiving IDPP-4 [45]. View (161KB) Indexing metadata
3. Fig. 3. Nomogram for assessing ΔHbA1c when choosing DPP-4. How to use: (1) select the inhibitor and (2) the initial level of HbA1c, then (3) lower the perpendicular on the “points” scale, (4) similarly for the FPG. (5) The total scores of the initial HbA1c and HFN correspond to the expected decrease in the level of HbA1c when taking the selected inhibitor [46]. View (244KB) Indexing metadata
4. Fig. 4. Dynamics of the level of GLP-1 and glucagon during the day [50]. View (364KB) Indexing metadata
5. Fig. 5. The risk relationship of the Mantel-Henzel combination endpoint and its individual components in the treatment with vildagliptin and comparator drugs [57]. View (86KB) Indexing metadata
6. Fig. 6. The effectiveness of vildagliptin in comparison with PSM with the addition of metformin - the comparison of the results of RCT and RCP [53]. View (174KB) Indexing metadata
7. Fig. 7. Average ΔHbA1c according to the GUARD study; * p <0.0001 compared with baseline [60]. View (161KB) Indexing metadata
8. Fig. 8. The risk ratio of complications of type 2 diabetes when taking vildagliptin and PSM [62]. View (96KB) Indexing metadata

Views

Abstract - 197

PDF (Russian) - 10

Remote (Russian) - 113

PlumX


Copyright (c) 2018 Demidova T.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.